Intelligent High-Security Access Control

Access control is an important security issue in particular because of terrorist threats. Access points are increasingly becoming equipped with advanced input sensors often based on biometrics, and with advanced intelligent methods that learn from experience. We have designed a flexible modular system based on integration of arbitrary access sensors and an arbitrary number of stand-alone modules. The system was tested with four sensors (a door sensor, an identity card reader, a fingerprint reader and a camera) and four independent modules (expert-defined rules, micro learning, macro learning and visual learning). Preliminary tests of the designed prototype are encouraging. Povzetek: Clanek opisuje vgradnjo inteligentnih metod v sistem za nadzor vstopa.

[1]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[2]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[3]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[4]  Luis A. Hernández Gómez,et al.  Usability evaluation of multi-modal biometric verification systems , 2006, Interact. Comput..

[5]  Eleazar Eskin,et al.  A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .

[6]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[7]  Loris Nanni,et al.  An advanced multi-modal method for human authentication featuring biometrics data and tokenised random numbers , 2006, Neurocomputing.

[8]  Julian Ashbourn Practical Biometrics: From Aspiration to Implementation , 2000 .

[9]  Blaz Zupan,et al.  Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.

[10]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[11]  Juan Jose García Adeva,et al.  Intrusion detection in web applications using text mining , 2007, Eng. Appl. Artif. Intell..

[12]  Gérard Chollet,et al.  Multi-modal identity verification using expert fusion , 2000, Inf. Fusion.

[13]  Markus M. Breunig Quality driven database mining , 2001 .

[14]  Kenneth Revett,et al.  A machine learning approach to keystroke dynamics based user authentication , 2007, Int. J. Electron. Secur. Digit. Forensics.

[15]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[16]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[17]  Markus M. Breunig Quality Driven Database Mining (Zusammenfassung) , 2001, Datenbank Rundbr..

[18]  Carla E. Brodley,et al.  Temporal sequence learning and data reduction for anomaly detection , 1998, CCS '98.

[19]  S. Kovacic,et al.  Motion Based Human Identification Using Histograms of Optical Flow , 2007 .

[20]  U. Halici,et al.  Intelligent biometric techniques in fingerprint and face recognition , 2000 .

[21]  Efraim Turban,et al.  Decision support systems and intelligent systems , 1997 .

[22]  Adrian A. Hopgood,et al.  Intelligent Systems for Engineers and Scientists , 2021 .

[23]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[24]  P. J. Williams,et al.  Data fusion on a distributed heterogeneous sensor network , 2006, SPIE Defense + Commercial Sensing.

[25]  Shaul Markovitch,et al.  Feature Generation Using General Constructor Functions , 2002, Machine Learning.

[26]  Alex M. Andrew,et al.  Intelligent Systems: Architecture, Design, and Control , 2002 .

[27]  Yi-xian Yang,et al.  Biometric-based personal identity-authentication system and security analysis , 2006 .

[28]  Bhavani M. Thuraisingham,et al.  Data Mining for Security Applications , 2008, EUC.

[29]  D.L. Wilson Intelligent video systems for perimeter and secured entry access control , 2005, Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology.

[30]  Michael J. Black,et al.  Learning the Statistics of People in Images and Video , 2003, International Journal of Computer Vision.

[31]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.