Enumerate and Measure: Improving Parameter Budget Management

Measure & Conquer (M&C) is the prominent technique for analyzing exact algorithms for computationally hard problems . It tries to balance worse and better situations within the algorithm analysis.

[1]  Henning Fernau,et al.  Exact and Parameterized Algorithms for Max Internal Spanning Tree , 2009, WG.

[2]  Saket Saurabh,et al.  Improved Exact Exponential Algorithms for Vertex Bipartization and Other Problems , 2005, ICTCS.

[3]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[4]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[5]  Hans L. Bodlaender,et al.  Exact Algorithms for Edge Domination , 2008, IWPEC.

[6]  Rolf Niedermeier,et al.  Parameterized Complexity of Vertex Cover Variants , 2007, Theory of Computing Systems.

[7]  Joachim Kneis,et al.  A New Algorithm for Finding Trees with Many Leaves , 2008, ISAAC.

[8]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[9]  Henning Fernau,et al.  Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs , 2008, WALCOM.

[10]  Elena Prieto Rodríguez,et al.  SYSTEMATIC KERNELIZATION IN FPT ALGORITHM DESIGN , 2005 .

[11]  Gregory Gutin,et al.  FPT algorithms and kernels for the Directed k-Leaf problem , 2008, J. Comput. Syst. Sci..

[12]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.

[13]  Toshihiro Fujito,et al.  A 2-approximation NC algorithm for connected vertex cover and tree cover , 2004, Inf. Process. Lett..

[14]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[15]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[16]  Henning Fernau,et al.  edge dominating set: Efficient Enumeration-Based Exact Algorithms , 2006, IWPEC.

[17]  Ge Xia,et al.  Labeled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard Problems , 2003, Algorithmica.

[18]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[19]  Hans L. Bodlaender,et al.  Design by Measure and Conquer, A Faster Exact Algorithm for Dominating Set , 2008, STACS.

[20]  David Manlove,et al.  Vertex and Edge Covers with Clustering Properties: Complexity and Algorithms , 2009, ACiD.

[21]  Henning Fernau,et al.  An Amortized Search Tree Analysis for k-Leaf Spanning Tree , 2009, SOFSEM.