Prediction of Reduced Ion Mobility Constants from Structural Information Using Multiple Linear Regression Analysis and Computational Neural Networks

Multiple linear regression analysis and computational neural networks are used to develop models that predict reduced ion mobility constants (K 0 ) from quantitative structural information encoded as descriptors. The errors associated with the models are similar to the calculated experimental error of ∼0.040 K 0 units. The best regression model contains five descriptors and has a multiple correlation coefficient (R) value of 0.991 and a standard deviation of 0.0469 K 0 units. The neural network model utilizes the same five descriptors and has a root mean square (RMS) error of 0.0393 K 0 units. The descriptors encode molecular size, weight, functional group, and structural classifications

[1]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[2]  A. Bondi van der Waals Volumes and Radii , 1964 .

[3]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[4]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[5]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[6]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[7]  R. N. Stillwell,et al.  Ion mass assignments based on mobility measuremets. Validity of plasma chromatographic mass mobility correlations , 1973 .

[8]  E. Horning,et al.  Dependence of polyatomic ion mobilities on ionic size , 1974 .

[9]  E. A. Mason,et al.  Theory of plasma chromatography/gaseous electrophoresis. Review , 1975 .

[10]  S. Benezra Separation of Mixtures of Aromatic Ketones in the Sub-nanogram Range by Plasma Chromatography , 1976 .

[11]  S. H. Kim,et al.  Gas chromatographic detection modes for the plasma chromatograph , 1977 .

[12]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[13]  S. H. Kim,et al.  Plasma chromatography of alkyl amines , 1978 .

[14]  Milan Randic,et al.  Search for all self-avoiding paths graphs for molecular graphs , 1979, Comput. Chem..

[15]  J. Topliss,et al.  Chance factors in studies of quantitative structure-activity relationships. , 1979, Journal of medicinal chemistry.

[16]  Kenneth J. Miller,et al.  Additions and Corrections - A New Empirical Method to Calculate Average Molecular Polarizabilities , 1979 .

[17]  D. F. Hagen Characterization of isomeric compounds by gas and plasma chromatography , 1979 .

[18]  P. Jurs,et al.  Studies of Chemical Structure-Biological Activity Relations Using Pattern Recognition , 1979 .

[19]  Milan Randic,et al.  On molecular identification numbers , 1984, J. Chem. Inf. Comput. Sci..

[20]  H. Hill,et al.  Table of reduced mobility values from ambient pressure ion mobility spectrometry. , 1986, Journal of chromatography.

[21]  R. J. Abraham,et al.  Charge calculations in molecular mechanics IV: A general method for conjugated systems , 1988 .

[22]  Z. Karpas,et al.  Differentiating between large isomers and derivation of structural information by ion mobility spectrometry/mass spectrometry techniques , 1988 .

[23]  Z. Karpas,et al.  Ion mobility spectrometry of aliphatic and aromatic amines , 1989 .

[24]  P. Jurs,et al.  Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies , 1990 .

[25]  Gary A. Eiceman,et al.  Ion Mobility Spectrometry in Analytical Chemistry , 1990 .

[26]  Gary A. Eiceman,et al.  Advances in Ion Mobility Spectrometry: 1980–1990 , 1991 .

[27]  Peter A. Jansson,et al.  Neural Networks: An Overview , 1991 .

[28]  David T. Stanton,et al.  Computer-assisted prediction of normal boiling points of furans, tetrahydrofurans, and thiophenes , 1991, J. Chem. Inf. Comput. Sci..

[29]  Zeev Karpas,et al.  Determination of bromine in air by ion mobility spectrometry , 1991 .

[30]  J. Zupan,et al.  Neural networks: A new method for solving chemical problems or just a passing phase? , 1991 .

[31]  Peter C. Jurs,et al.  Atomic charge calculations for quantitative structure—property relationships , 1992 .

[32]  Zeev Karpas,et al.  Ion mobility spectrometric studies of organophosphorus compounds , 1992 .

[33]  A. Snyder,et al.  Portable Hand-Held Gas Chromatography/Ion Mobility Spectrometry Device , 1993 .