Laser diagnostics of trace species in low-pressure flat flame

Laser-based diagnostic methods can measure the absolute concentrations of various atoms and molecules, even at low concentrations. They can also measure temperature with high accuracy. One very important advantage of these methods is the ability to make measurements without affecting the studied process, for example flame. Laser-based spectroscopy can thus provide important information for the validation of chemical mechanisms in well-defined, low-pressure flat flames. This paper reviews several methods: laser-induced fluorescence, cavity ring-down spectroscopy, intracavity laser absorption spectroscopy, and polarization spectroscopy. All four are sufficiently sensitive to measure the concentrations of trace species in low-pressure flat flames. The complementarity of the methods for combustion diagnostics is also discussed.

[1]  B. Atakan,et al.  Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames , 2000 .

[2]  Iwan Holleman,et al.  Trace gas detection via cavity ring down spectroscopy , 1995, Other Conferences.

[3]  Richard N. Zare,et al.  Effect of laser lineshape on the quantitative analysis of cavity ring-down signals , 2002 .

[4]  N. Laurendeau,et al.  Experimental assessment of O(2) interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection. , 1996, Applied optics.

[5]  James S. Harris,et al.  Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame , 1998 .

[6]  Israel Schechter,et al.  Aerosol analysis by cavity-ring-down laser spectroscopy , 2002 .

[7]  D. Crosley,et al.  Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence , 1996 .

[8]  J. Zetterberg,et al.  Mid-infrared polarization spectroscopy of C 2 H 2 : Non-intrusive spatial-resolved measurements of polyatomic hydrocarbon molecules for combustion diagnostics , 2007 .

[9]  I. Rahinov,et al.  Laser absorption spectroscopy diagnostics of nitrogen-containing radicals in low-pressure hydrocarbon flames doped with nitrogen oxides. , 2001, Faraday discussions.

[10]  R. Hanson,et al.  Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: Fluorescence modeling and experimental validation , 1995 .

[11]  T. Slanger,et al.  Branch intensities and oscillator-strengths for the herzberg absorption systems in oxygen , 1994 .

[12]  Jay B. Jeffries,et al.  Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4-O2-N2 and CH4-NO-O2-N2 flames , 2001 .

[13]  R. Hanson,et al.  Instantaneous temperature field measurements using planar laser-induced fluorescence. , 1985, Optics letters.

[14]  I. Rahinov,et al.  Intracavity laser absorption spectroscopy of NH2 in methane/air flames doped with N2O, NO, and NH3 , 2005 .

[15]  A. Mcilroy,et al.  Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A transition , 2000 .

[16]  I. Rahinov,et al.  Intracavity Laser Absorption Spectroscopy for flame diagnostics , 2007 .

[17]  S. Cheskis Quantitative measurements of absolute concentrations of intermediate species in flames , 1999 .

[18]  Gregory P. Smith,et al.  Evidence of NCN as a flame intermediate for prompt NO , 2003 .

[19]  Van Oijen,et al.  Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy , 2003 .

[20]  I. Rahinov,et al.  Intracavity laser absorption spectroscopy measurements of CN using red system A–X. Simultaneous observation of CN, NH2, HNO and in low pressure hydrocarbon flames doped with nitrogen oxides , 2002 .

[21]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[22]  Ulrich Meier,et al.  Two-dimensional LIF approaches for the accurate determination of radical concentrations and temperature in combustion , 1992 .

[23]  J. Jeffries,et al.  Laser-induced fluorescence determination of temperatures in low pressure flames. , 1989, Applied optics.

[24]  R. Hanson,et al.  Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. , 1993, Applied optics.

[25]  J. Hodges,et al.  Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer , 2005 .

[26]  J. W. Fleming,et al.  Laser-induced fluorescence measurements of NCN in low-pressure CH4/O2/N2 flames and its role in prompt NO formation , 2008 .

[27]  T. Kasper,et al.  Combination of Laser- and Mass-Spectroscopic Techniques for the Investigation of Fuel-Rich Flames , 2005 .

[28]  S Svanberg,et al.  Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection. , 1983, Optics letters.

[29]  J. W. Fleming,et al.  Comparative species concentrations in CH4/O2/Ar flames doped with N2O, NO, and NO2 , 1994 .

[30]  Bradley A. Williams,et al.  Radical species profiles in low-pressure methane flames containing fuel nitrogen compounds , 1997 .

[31]  Michael N. R. Ashfold,et al.  Cavity ring-down spectroscopy , 1998 .

[32]  A. Mokhov,et al.  The effects of burner stabilization on Fenimore NO formation in low-pressure, fuel-rich premixed CH4/O2/N2 flames , 2007 .

[33]  Jay B. Jeffries,et al.  Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results , 2000 .

[34]  I. Rahinov,et al.  Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames , 2006 .

[35]  N. Laurendeau Temperature measurements by light-scattering methods , 1988 .

[36]  F. Stoeckel,et al.  Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy , 1997 .

[37]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[38]  A. Eckbreth Laser Diagnostics for Combustion Temperature and Species , 1988 .

[39]  C. Schulz,et al.  Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry , 2007 .

[40]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .

[41]  V. Baev,et al.  Laser intracavity absorption spectroscopy , 1999 .

[42]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[43]  S. Harris,et al.  Intracavity laser spectroscopy: an old field with new prospects for combustion diagnostics. , 1984, Applied optics.

[44]  F. Stoeckel,et al.  Intracavity laser absorption measurements at ultrahigh spectral resolution. , 1997, Applied optics.

[45]  V. A. Akimov,et al.  Laser spectroscopy: Intracavity laser spectroscopy by using a Fe2+:ZnSe laser , 2007 .

[46]  Jorge Luque,et al.  A note on chemiluminescence in low-pressure hydrogen and methane-nitrous oxide flames , 2005 .

[47]  S. Cheskis,et al.  Nonequilibrium concentrations of the vibrationally excited OH radical in a methane flame measured by cavity ring-down spectroscopy , 1998 .

[48]  J. B. Paul,et al.  Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. , 1997, Chemical reviews.

[49]  I. Rahinov,et al.  Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames , 2004 .

[50]  D. Romanini,et al.  Cavity ring-down spectroscopy of OH radicals in low pressure flame , 1998 .

[51]  S. Cheskis,et al.  Intracavity laser absorption spectroscopy of sooting acetylene/air flames , 2008 .

[52]  S. Cheskis,et al.  Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy , 1998 .

[53]  S. Harris,et al.  Intracavity laser tomography of C(2) in an oxyacetylene flame. , 1981, Optics letters.

[54]  M. Linne,et al.  Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy. , 2002, Applied optics.

[55]  J. B. Paul,et al.  Peer Reviewed: Cavity Ringdown Laser Absorption Spectroscopy , 1997 .

[56]  KoHse-HoingHaus Applied Combustion Diagnostics , 2002 .

[57]  N. P. Cernansky,et al.  Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy , 1997 .

[58]  R. Hanson,et al.  Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body , 1993 .

[59]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[60]  Jay B. Jeffries,et al.  Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames , 2004 .

[61]  Jerry M. Seitzman,et al.  Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfields , 1994 .

[62]  M. Ashfold,et al.  Spectroscopy and predissociation dynamics of the à 1A′′ state of HNO , 1997 .

[63]  Paul Ewart,et al.  Cavity ring-down measurements in flames using a single-mode tunable laser system , 2003 .

[64]  N. Laurendeau,et al.  Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure. , 2004, Applied optics.

[65]  Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames , 2008 .

[66]  O. Sarkisov,et al.  Kinetics of HNO reactions with O2 and HNO. , 1993 .

[67]  U. Meier,et al.  Laser-induced fluorescence thermometry and concentration measurements on NOA–X (0-0) transitions in the exhaust gas of high pressure CH4/air flames , 1995 .

[68]  R. Zare,et al.  Measurement of the methyl radical concentration profile in a hot‐filament reactor , 1995 .

[69]  E. Therssen,et al.  Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames , 2004 .

[70]  H. Bockhorn,et al.  Destruction and formation of no in low pressure stoichiometric CH4/O2 flames , 1992 .

[71]  E. Therssen,et al.  Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. , 1999 .

[72]  S. Cheskis Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames , 1995 .

[73]  A. R. Ravishankara,et al.  Design and Application of a Pulsed Cavity Ring-Down Aerosol Extinction Spectrometer for Field Measurements , 2007 .

[74]  R. Stolk,et al.  Absolute concentrations of the C2 radical in the A 1Πu state measured by cavity ring down spectroscopy in an atmospheric oxyacetylene flame , 2002 .

[75]  Daniele Romanini,et al.  Two schemes for trace detection using cavity ringdown spectroscopy , 2004 .

[76]  W. Meier,et al.  A flat flame burner as calibration source for combustion research: Temperatures and species concentrations of premixed H2/air flames , 1994 .

[77]  R. Stolk,et al.  Cavity ring down spectroscopy measurements of absolute CN concentrations during flame deposition of diamond , 2002 .

[78]  Jay B. Jeffries,et al.  Nitric oxide formation and reburn in low-pressure methane flames , 1998 .

[79]  L. Correia,et al.  Intracavity absorption spectroscopy with thulium-doped fibre laser , 2003 .

[80]  J. Jeffries,et al.  Laser-induced fluorescence of O(3p(3)P), O(2), and NO near 226 nm: photolytic interferences and simultaneous excitation in flames. , 1989, Optics letters.

[81]  I. Rahinov,et al.  Absorption spectroscopy measurements of NH and NH2 absolute concentrations in methane/air flames doped with N2O , 2000 .

[82]  F. W. Birss,et al.  The absorption spectrum of NH2 in the region 5300 to 6800 Å , 1988 .

[83]  Theodor W. Hänsch,et al.  Doppler-Free Laser Polarization Spectroscopy , 1976 .

[84]  Changhong Hu,et al.  Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames. , 2007, The Journal of chemical physics.

[85]  J. Hodges,et al.  Laser bandwidth effects in quantitative cavity ring-down spectroscopy. , 1996, Applied optics.

[86]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[87]  Alan C. Eckbreth,et al.  CARS thermometry in practical combustors , 1980 .

[88]  E. Therssen,et al.  Measurements of absolute concentration profiles of C2 in non-sooting and sooting diffusion flames by coupling cavity ring-down spectroscopy and laser induced fluorescence , 2005 .

[89]  V. A. Akimov,et al.  LASER SPECTROSCOPY: Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser , 2005 .

[90]  Jay B. Jeffries,et al.  Laser-induced fluorescence of seeded nitric oxide as a flame thermometer , 1998 .

[91]  D. Dai,et al.  Quantitative measurements of O2 b ← X(2,1,0←0) bands by using cavity ring-down spectroscopy , 1999 .

[92]  Kevin K. Lehmann,et al.  The superposition principle and cavity ring-down spectroscopy , 1996 .

[93]  W. Demtröder Laser Spectroscopy: Basic Concepts and Instrumentation , 1996 .

[94]  Jay B. Jeffries,et al.  Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame , 2001 .

[95]  Charles C. Harb,et al.  A laser-locked cavity ring-down spectrometer employing an analog detection scheme , 2000 .

[96]  M P Lee,et al.  Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO. , 1993, Applied optics.

[97]  S. Milošević,et al.  Nonlinear effects in pulsed cavity ringdown spectroscopy of lithium vapour , 2000 .

[98]  D. Pohl,et al.  Laser-Induced Dynamic Gratings , 1986 .

[99]  F. Stoeckel,et al.  Intracavity laser spectroscopy with vibronic solid-state lasers. I. Spectrotemporal transient behavior of a Ti:sapphire laser , 1994 .

[100]  A. Brockhinke,et al.  Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit. , 2005, Applied optics.

[101]  I. Rahinov,et al.  Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy , 2006 .

[102]  M S Feld,et al.  Cavity ring-down technique and its application to the measurement of ultraslow velocities. , 1995, Optics letters.

[103]  A. Campargue,et al.  High sensitivity intracavity laser spectroscopy: applications to the study of overtone transitions in the visible range , 1990 .

[104]  J. J. Scherer,et al.  Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame , 1997 .

[105]  Jay B. Jeffries,et al.  Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence , 2002 .

[106]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[107]  G. Friedrichs Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part 1: Frequency Modulation Spectroscopy , 2008 .

[108]  D. Crosley,et al.  Laser-induced fluorescence spectroscopy of NCO and NH2 in atmospheric pressure flames , 1985 .

[109]  J. Schneiderman,et al.  C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames , 2005 .

[110]  Theodor W. Hänsch,et al.  Ultrasensitive response of a CW dye laser to selective extinction , 1972 .

[111]  W Ubachs,et al.  Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment. , 2001, Applied optics.

[112]  Y. Podmar’kov,et al.  Intracavity laser spectroscopy with a Co:MgF2 laser , 1998 .

[113]  K. Kohse-Höinghaus Laser techniques for the quantitative detection of reactive intermediates in combustion systems , 1991 .

[114]  de Lph Philip Goey,et al.  Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ring-down spectroscopy , 2003 .

[115]  V. Baev,et al.  Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption , 2000 .

[116]  F. Stoeckel,et al.  Intracavity laser spectroscopy with vibronic solid-state lasers: II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser , 1995 .

[117]  David A. Newnham,et al.  Integrated absorption intensity and Einstein coefficients for the O2 a1Δg-X3Σg- (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell , 1999 .

[118]  Sergey Cheskis,et al.  Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames , 2006 .

[119]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[120]  E. Therssen,et al.  Quantitative Features and Sensitivity of Cavity Ring-Down Measurements of Species Concentrations in Flames , 2001 .

[121]  G. Friedrichs Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part 2: Cavity Ringdown Spectroscopy , 2008 .