Physiological flexibility; a necessity for life in anoxic and sulphidic habitats
暂无分享,去创建一个
[1] Andreas ahn'l. Physiological adaptations of Cyprideis torosa ( Crustacea , Ostracoda ) to hydrogen sulphide , 2006 .
[2] H. Pörtner,et al. Recovery from anaerobiosis of the lugworm,Arenicola marina L.: Changes of metabolite concentrations in the body-wall musculature , 1979, Journal of comparative physiology.
[3] E. Zebe. In vivo-Untersuchungen über den Glucose-Abbau beiArenicola marina (Annelida, Polychaeta) , 1975, Journal of comparative physiology.
[4] L. Hagerman,et al. Tolerance of the Baltic amphipod Monoporeia affinis to hypoxia, anoxia and hydrogen sulfide , 1999 .
[5] L. Hagerman,et al. Effects of short-term hypoxia on metabolism and haemocyanin oxygen transport in the prawns Palaemon adspersus and Palaemonetes varians , 1998 .
[6] G. Graf,et al. Heat production in Saduria entomon (Isopoda) from the Gulf of Gdańsk during an experimental exposure to anoxic conditions , 1998 .
[7] L. Hagerman,et al. Oxygen-binding properties of haemolymph from the benthic amphipod Monoporeia affinis from the Baltic , 1997 .
[8] B. Vistisen,et al. Tolerance to low oxygen and sulfide in Amphiura filiformis and Ophiura albida (Echinodermata: Ophiuroidea) , 1997 .
[9] L. Hagerman,et al. Oxygen binding characteristics of haemocyanin in the Baltic isopod Saduria entomon , 1997 .
[10] M. Grieshaber,et al. Sulphide Metabolism in Thalassinidean Crustacea , 1997, Journal of the Marine Biological Association of the United Kingdom.
[11] C. Astall,et al. Behavioural and Physiological Implications of a Burrow-dwelling Lifestyle for Two Species of Upogebiid Mud-shrimp (Crustacea: Thalassinidea) , 1997 .
[12] A. Taylor,et al. Haemocyanin Oxygen Transport in Ocypode Spp.: Modulation of Oxygen Affinity? , 1997, Journal of the Marine Biological Association of the United Kingdom.
[13] L. Hagerman,et al. Recovery from hypoxia with and without sulfide in Saduria entomon : Oxygen debt, reduced sulfur and anaerobic metabolites , 1996 .
[14] B. Vismann. Sulfide species and total sulfide toxicity in the shrimp Crangon crangon , 1996 .
[15] A. R. Johns. Sulphide metabolism in burrowing marine crustacea , 1996 .
[16] M. Grieshaber,et al. Mitochondrial Sulfide Oxidation in Arenicola Marina , 1996 .
[17] M. Grieshaber,et al. Mitochondrial sulfide oxidation in Arenicola marina. Evidence for alternative electron pathways. , 1996, European journal of biochemistry.
[18] D. Morritt,et al. Oxygen Carriage By the Haemolymph of Hyperiid Amphipods , 1995, Journal of the Marine Biological Association of the United Kingdom.
[19] P. Moore,et al. The burrows and physiological adaptations to a burrowing lifestyle of Natatolana borealis (Isopoda: Cirolanidae) , 1995 .
[20] L. Hagerman,et al. Anaerobic metabolism in the shrimp Crangon crangon exposed to hypoxia, anoxia and hydrogen sulfide , 1995 .
[21] M. Grieshaber,et al. Sulfide Tolerance in Marine Invertebrates , 1995 .
[22] R. Oeschger,et al. Influence of anoxia and hydrogen sulphide on the energy metabolism of Scrobicularia plana (da Costa) (Bivalvia) , 1994 .
[23] B. Vismann,et al. Sulphide tolerance in Heteromastus filiformis (Polychaeta): Mitochondrial adaptations , 1994 .
[24] M. Grieshaber,et al. Oxygen dependent sulfide detoxification in the lugwormArenicola marina , 1994 .
[25] L. Hagerman,et al. Haemolymph nitrogen compounds and ammonia efflux rates under anoxia in the brackish water isopod Saduria entomon , 1994 .
[26] H. Pörtner,et al. Physiological and metabolic responses to hypoxia in invertebrates. , 1994, Reviews of physiology, biochemistry and pharmacology.
[27] L. Hagerman,et al. Anaerobic metabolism, hypoxia and hydrogen sulphide in the brackish water isopod Saduria entomon (L.) , 1993 .
[28] L. Hagerman,et al. Activity and ventilation-induced variations of postbranchial oxygen tensions in the isopod Saduria entomon , 1993 .
[29] C. Astall. Comparative physiological ecology of some mud-burrowing shrimps (Crustacea: Decapoda: Thalassinidea) , 1993 .
[30] G. Graf,et al. Metabolic responses of Halicryptus spinulosus (Priapulida) to reduced oxygen levels and anoxia , 1992 .
[31] R. Oeschger,et al. Sulfide detoxification and tolerance in Halicryptus spinulosus (Priapulida): a multiple strategy , 1992 .
[32] J. Truchot. Respiratory Function of Arthropod Hemocyanins , 1992 .
[33] S. Baden,et al. Effects of periodic hypoxia on distribution of demersal fish and crustaceans , 1991 .
[34] B. Vismann. Sulfide tolerance: Physiological mechanisms and ecological implications , 1991 .
[35] R. Strang,et al. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery , 1991 .
[36] R. Hoffmann,et al. Phosphofructokinase from mollusc muscle is activated by phosphorylation. , 1991, Archives of biochemistry and biophysics.
[37] L. Hagerman,et al. Ion regulation under Anoxia in the brackish water Isopod Saduria (Mesidotea) Entomon , 1991 .
[38] B. Vismann. Physiology of sulfide detoxification in the isopod Saduria (Mesidotea) entomon , 1991 .
[39] C. Mangum,et al. Respiratory Responses of the Blue Crab Callinectes sapidus to Long-Term Hypoxia. , 1990, The Biological bulletin.
[40] B. Vismann. Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida : Polychaeta) , 1990 .
[41] R. Oeschger. Long-term anaerobiosis in sublittoral marine invertebrates from the Western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia) , 1990 .
[42] L. Hagerman,et al. Anaerobic metabolic strategy of the glacial relict isopod Saduria (Mesidotea) entomon , 1990 .
[43] F. Lallier,et al. MODULATION OF HAEMOCYANIN OXYGEN-AFFINITY BY L-LACTATE AND URATE IN THE PRAWN PENAEUS JAPONICUS , 1989 .
[44] J. Spicer,et al. Interspecific comparison of the respiratory response to declining oxygen tension and the oxygen transporting properties of the blood of some palaemonid prawns (Crustacea: Palaemonidae) , 1989 .
[45] M. Grieshaber,et al. Adaptation of the polychaete worm Scoloplos armiger to hypoxic conditions , 1988 .
[46] L. Hagerman,et al. Respiration, ventilation and circulation under hypoxia in the glacial relict Saduria (Mesidotea) entomon , 1988 .
[47] K. Storey. Suspended animation: the molecular basis of metabolic depression , 1988 .
[48] Professor Dr. Jean-Paul Truchot. Comparative Aspects of Extracellular Acid-Base Balance , 1987, Zoophysiology.
[49] F. Lallier,et al. The effect of ambient oxygen and temperature on haemolymph l-lactate and urate concentrations in the shore crab Carcinus maenas , 1987 .
[50] G. Gäde,et al. Metabolic adaptation of the horseshoe crab, Limulus polyphemus, during exercise and environmental hypoxia and subsequent recovery , 1986 .
[51] L. Hagerman,et al. Behaviour, tolerance and anaerobic metabolism under hypoxia in the brackish-water shrimp Crangon crangon , 1986 .
[52] L. Hagerman. Haemocyanin concentration in the shrimp Crangon crangon (l.) after exposure to moderate hypoxia , 1986 .
[53] A. de Zwaan,et al. Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia). , 1985, Symposia of the Society for Experimental Biology.
[54] B. Surholt,et al. Anaerobic metabolism in Arenicola marina and Nereis diversicolor during low tide , 1984 .
[55] J. Westermann,et al. Anaerobic metabolism in the lugworm Arenicola Marina L.: The transition from aerobic to anaerobic metabolism , 1984 .
[56] L. Hagerman,et al. The influence of hypoxia on the blood regulation of the brackish water shrimp Palaemonetes varians Leach , 1984 .
[57] J. Hodgkiss. A study of excitatory efferent fibres in the intestinal nerve of the fowl (Gallus domesticus) , 1984 .
[58] L. Hagerman,et al. The influence of temperature on the osmoregulation of the brackish-water shrimp Palaemonetes varians Leach , 1983 .
[59] L. Hagerman. Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions , 1983 .
[60] S. Morris,et al. Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools , 1983 .
[61] E. Zebe,et al. Energy metabolism in the tail muscles of the shrimp Crangon crangon during work and subsequent recovery , 1983 .
[62] U. Schöttler. An investigation on the anaerobic metabolism of Nephtys hombergii (Annelida: Polychaeta) , 1982 .
[63] G. Gäde,et al. Anaerobic metabolism of the common cockle, Cardium edule—IV. Time dependent changes of metabolites in the foot and gill tissue induced by anoxia and electrical stimulation , 1981 .
[64] J. Truchot,et al. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. , 1980, Respiration physiology.
[65] T M McLellan,et al. The transition from aerobic to anaerobic metabolism. , 1980, Research quarterly for exercise and sport.
[66] C. F. Herreid. Hypoxia in invertebrates , 1980 .
[67] D. McLusky,et al. Some effects of salinity and temperature on the osmotic and ionic regulation of Praunus flexuosus (Crustacea, Mysidacea) from Isefjord , 1979 .
[68] U. Schottler. On the Anaerobic Metabolism of Three Species of Nereis (Annelida) , 1979 .
[69] P. Butler,et al. Respiratory and Circulatory Changes in the Lobster (Homarus Vulgaris) During Long Term Exposure to Moderate Hypoxia , 1978 .
[70] A. Bottoms. STARVATION AND THE LACK OF HAEMOCYANIN IN CANCER PAGURUS L. (CRUSTACEA: DECAPODA) FROM SCOTTISH WEST COAST WATERS , 1978 .
[71] A. Bottoms. Some aspects of the respiratory physiology of Cancer pagurus L. (crustacea : decapoda) in Scottish west coast waters , 1977 .
[72] G. Gäde,et al. Anaerobic metabolism of the common cockle Cardium edule , 1981, Archives internationales de physiologie et de biochimie.
[73] A. Zwaan,et al. Anaerobic metabolism in Bivalvia (Mollusca). Characteristics of anaerobic metabolism. , 1976, Comparative biochemistry and physiology. B, Comparative biochemistry.
[74] G. Gäde,et al. Anaerobic metabolism of the common cockle, Cardium edule. I.--The utilization of glycogen and accumulation of multiple end products. , 1975, Archives internationales de physiologie et de biochimie.
[75] H. Theede,et al. Sauerstoffmangelresistenz mariner Bodenvertebraten aus der Westlichen Ostsee , 1974 .
[76] B. Ganning. Studies on chemical, physical and biological conditions in Swedish rockpool ecosystems , 1971 .
[77] B. Ganning. On the ecology of Heterocypris salinus, H. incongruens and Cypridopsis aculeata (Crustacea: Ostracoda) from Baltic brackish-water rockpools , 1971 .
[78] R. Lange. Isosmotic intracellular regulation and euryhalinity in marine bivalves , 1970 .
[79] B. Muus. The fauna of Danish estuaries and lagoons : distribution and ecology of dominating species in the shallow reaches of the mesohaline zone , 1967 .
[80] O. Kinne. Physiological aspects of animal life in estuaries with special reference to salinity , 1966 .
[81] H. J. Thomas. The Oxygen Uptake of the Lobster (Homarus Vulgaris Edw.) , 1954 .
[82] A. C. Redfield,et al. The Respiratory Function of the Hemocyanins. , 1925, Proceedings of the National Academy of Sciences of the United States of America.
[83] Annelida Polychaeta,et al. An Investigation on the Anaerobic Metabolism of Nephtys hombergii , 2022 .