Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems the main difficulty we face is the need to analyze the convergence of fluxes defined on the faces of cells, whereas the convergence of the coefficients happens only with respect to the “volumetric” Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example.

[1]  R. Giering,et al.  Computation of topological sensitivities in fluid dynamics: Cost function versatility , 2006 .

[2]  M. Bendsøe,et al.  Topology optimization of heat conduction problems using the finite volume method , 2006 .

[3]  Grégoire Allaire Conception optimale de structures , 2007 .

[4]  Convergence of an algorithm in optimal design , 1997 .

[5]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[6]  A. Evgrafov The Limits of Porous Materials in the Topology Optimization of Stokes Flows , 2005 .

[7]  K. Maute,et al.  A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimisation , 2008 .

[8]  Eberhard Zeidler,et al.  Applied Functional Analysis: Main Principles and Their Applications , 1995 .

[9]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[10]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[11]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[12]  R. B. Haber,et al.  Perimeter Constrained Topology Optimization of Continuum Structures , 1996 .

[13]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[14]  Thierry Gallouët,et al.  Error Estimates on the Approximate Finite Volume Solution of Convection Diffusion Equations with General Boundary Conditions , 2000, SIAM J. Numer. Anal..

[15]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[16]  K. Maute,et al.  A parametric level-set approach for topology optimization of flow domains , 2010 .

[17]  Kurt Maute,et al.  Topology optimization for nano‐scale heat transfer , 2009 .

[18]  K. Maute,et al.  Topology optimization of fluid domains: kinetic theory approach , 2008 .

[19]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[20]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[21]  Ole Sigmund,et al.  Topology optimization of microfluidic mixers , 2009 .

[22]  Kurt Maute,et al.  Topology Optimization of Fluid Problems by the Lattice Boltzmann Method , 2006 .

[23]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[24]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[25]  M. Bazant,et al.  Topology and shape optimization of induced-charge electro-osmotic micropumps , 2009, 0901.1788.

[26]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[27]  K. Maute,et al.  Topology optimization of flexible micro-fluidic devices , 2010 .

[28]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[29]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[30]  Design of microfluidic bioreactors using topology optimization , 2007 .

[31]  J. Petersson Some convergence results in perimeter-controlled topology optimization , 1999 .

[32]  H. Rodrigues,et al.  Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter” , 1999 .

[33]  Oliver Moos,et al.  Bionic Optimization of Air-Guiding Systems , 2004 .

[34]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[35]  Thierry Gallouët,et al.  Analysis tools for finite volume schemes , 2007 .

[36]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[37]  Fridolin Okkels,et al.  Design of Micro-Fluidic Bio-Reactors Using Topology Optimization , 2007 .

[38]  Kurt Maute,et al.  Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization , 2009 .

[39]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[40]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[41]  L. Evans Measure theory and fine properties of functions , 1992 .

[42]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[43]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[44]  Eddie Wadbro,et al.  Megapixel Topology Optimization on a Graphics Processing Unit , 2009, SIAM Rev..

[45]  B. Dacorogna Direct methods in the calculus of variations , 1989 .