Isorange Pairwise Orthogonal Transform

Spectral transforms are tools commonly employed in multi- and hyperspectral data compression to decorrelate images in the spectral domain. The pairwise orthogonal transform (POT) is one such transform that has been specifically devised for resource-constrained contexts similar to those found on board satellites or airborne sensors. Combining the POT with a 2-D coder yields an efficient compressor for multi- and hyperspectral data. However, a drawback of the original POT is that its dynamic range expansion, i.e., the increase in bit depth of transformed images, is not constant, which may cause problems with hardware implementations. Additionally, the dynamic range expansion is often too large to be compatible with the current 2-D standard CCSDS 122.0-B-1. This paper introduces the isorange POT, a derived transform that has a small and limited dynamic range expansion, compatible with CCSDS 122.0-B-1 in almost all scenarios. Experimental results suggest that the proposed transform achieves lossy coding performance close to that of the original transform. For lossless coding, the original POT and the proposed isorange POT achieve virtually the same performance.

[1]  Andrew G. Tescher,et al.  Adaptive two-stage Karhunen-Loeve-transform scheme for spectral decorrelation in hyperspectral bandwidth compression , 2010 .

[2]  Bormin Huang,et al.  Lossless compression of hyperspectral imagery via lookup tables with predictor selection , 2006, SPIE Remote Sensing.

[3]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[4]  Shen-En Qian,et al.  Optical Satellite Signal Processing and Enhancement , 2013 .

[5]  Jarno Mielikäinen,et al.  Lossless Compression of Hyperspectral Images Using a Quantized Index to Lookup Tables , 2008, IEEE Geoscience and Remote Sensing Letters.

[6]  Nasir D. Memon,et al.  Context-based lossless interband compression-extending CALIC , 2000, IEEE Trans. Image Process..

[7]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  J. Mielikainen,et al.  Lossless compression of hyperspectral images using lookup tables , 2006, IEEE Signal Processing Letters.

[9]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[10]  Martin Pilgram,et al.  Consultative Committee For Space Data Systems , 2009 .

[11]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[12]  Matthew Klimesh,et al.  Low-complexity adaptive lossless compression of hyperspectral imagery , 2006, SPIE Optics + Photonics.

[13]  Soontorn Oraintara,et al.  Integer sub-optimal Karhunen-Loeve transform for multi-channel lossless EEG compression , 2006, 2006 14th European Signal Processing Conference.

[14]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[15]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[16]  Luciano Alparone,et al.  Crisp and Fuzzy Adaptive Spectral Predictions for Lossless and Near-Lossless Compression of Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[17]  Ian Blanes,et al.  Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard , 2013 .

[18]  Michael W. Marcellin,et al.  Divide-and-Conquer Strategies for Hyperspectral Image Processing: A Review of Their Benefits and Advantages , 2012, IEEE Signal Processing Magazine.

[19]  Matthew Klimesh,et al.  Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Li Li,et al.  Efficient implementation of the CCSDS 122.0-B-1 compression standard on a space-qualified field programmable gate array , 2013 .

[21]  Jing Zhang,et al.  Lossy-to-Lossless Compression of Hyperspectral Imagery Using Three-Dimensional TCE and an Integer KLT , 2008, IEEE Geoscience and Remote Sensing Letters.

[22]  James E. Fowler,et al.  3D WAVELET-BASED COMPRESSION OF HYPERSPECTRAL IMAGERY , 2007 .

[23]  B. Penna,et al.  A New Low Complexity KLT for Lossy Hyperspectral Data Compression , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[24]  Pengwei Hao,et al.  Matrix factorizations for reversible integer mapping , 2001, IEEE Trans. Signal Process..

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  Isidore Paul Akam Bita,et al.  On optimal transforms in lossy compression of multicomponent images with JPEG2000 , 2010, Signal Process..

[27]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[28]  Dave Fisher,et al.  A 320 Mbps flexible image data compressor for space applications , 2010, 2010 IEEE Aerospace Conference.

[29]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[30]  Fons A. M. L. Bruekers,et al.  New Networks for Perfect Inversion and Perfect Reconstruction , 1992, IEEE J. Sel. Areas Commun..

[31]  Ian Blanes,et al.  Pairwise Orthogonal Transform for Spectral Image Coding , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Ian Blanes,et al.  Cost and Scalability Improvements to the Karhunen–Loêve Transform for Remote-Sensing Image Coding , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[34]  James E. Fowler,et al.  Three‐Dimensional Wavelet‐Based Compression of Hyperspectral Imagery , 2006 .

[35]  Isidore Paul Akam Bita,et al.  On optimal orthogonal transforms at high bit-rates using only second order statistics in multicomponent image coding with JPEG2000 , 2010, Signal Process..