Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization

Industrial processes involving composite materials need for efficient numerical simulations in order to optimize the process parameters. Even if the thermo-mechanical models are nowadays well established, efficient simulations need for further developments. In this work we are addressing some of these issues, in particular the one related to fast solutions combining model reduction and parallel time integration. A separated representation will be also proposed in the context of material homogenization allowing to alleviate the usual mesh constraints.

[1]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[2]  Francisco Chinesta,et al.  Homogenized thermal conduction model for particulate foods , 2002 .

[3]  Elías Cueto,et al.  On thea priori model reduction: Overview and recent developments , 2006 .

[4]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[5]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[6]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[7]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[8]  Francisco Chinesta,et al.  On the steady solution of non-linear advection equations in steady recirculating flows , 2002 .

[9]  Francisco Chinesta,et al.  On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells , 2006 .

[10]  F. Chinesta,et al.  An efficient ‘a priori’ model reduction for boundary element models , 2005 .

[11]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[12]  Adam Fic,et al.  Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis , 2005 .

[13]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[14]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[15]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[16]  Francisco Chinesta,et al.  On the steady solution of linear advection problems in steady recirculating flows , 2001 .

[17]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .