Biocompatibility and Mineralization Potential of ProRoot Mineral Trioxide Aggregate and Biodentine on Mesenchymal Stem Cells

[1]  J. Koh,et al.  Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells. , 2015, International endodontic journal.

[2]  Ahmed Alkahtani,et al.  Comparative evaluation of push-out bond strength of ProRoot MTA, bioaggregate and biodentine. , 2014, The journal of contemporary dental practice.

[3]  A. Cortizo,et al.  Fumarate/ceramic composite based Scaffolds for tissue engineering: evaluation of hydrophylicity, degradability, toxicity and biocompatibility , 2014 .

[4]  H. Bosomworth,et al.  Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line. , 2014, Journal of endodontics.

[5]  Seok-Woo Chang,et al.  Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. , 2014, Journal of endodontics.

[6]  M. Parafiniuk,et al.  Response of human dental pulp capped with biodentine and mineral trioxide aggregate. , 2013, Journal of Endodontics.

[7]  W. Oh,et al.  Biocompatibility of mineral trioxide aggregate mixed with hydration accelerators. , 2013, Journal of endodontics.

[8]  Ya Shen,et al.  In vitro cytotoxicity evaluation of a novel root repair material. , 2013, Journal of endodontics.

[9]  Ariane Berdal,et al.  Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. , 2012, Journal of endodontics.

[10]  E. Tobiasch,et al.  Mechanisms Underlying the Osteo- and Adipo-Differentiation of Human Mesenchymal Stem Cells , 2012, TheScientificWorldJournal.

[11]  E. Schneiderman,et al.  Biocompatibility and osteogenic potential of new generation endodontic materials established by using primary osteoblasts. , 2011, Journal of endodontics.

[12]  V. D’antò,et al.  Effect of mineral trioxide aggregate on mesenchymal stem cells. , 2010, Journal of endodontics.

[13]  Chia-Che Ho,et al.  In vitro bioactivity and biocompatibility of dicalcium silicate cements for endodontic use. , 2009, Journal of endodontics.

[14]  J. Granjeiro,et al.  Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. , 2009, Journal of endodontics.

[15]  Takashi Saito,et al.  The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study. , 2008, Journal of endodontics.

[16]  G. P. Stewart,et al.  Chemical modification of proroot mta to improve handling characteristics and decrease setting time. , 2007, Journal of endodontics.

[17]  A. Yap,et al.  Comparison of the physical and mechanical properties of MTA and portland cement. , 2006, Journal of endodontics.

[18]  Jiang Chang,et al.  The self-setting properties and in vitro bioactivity of tricalcium silicate. , 2005, Biomaterials.

[19]  M. Versiani,et al.  A comparative histological evaluation of the biocompatibility of materials used in apical surgery. , 2004, International endodontic journal.

[20]  M. Torabinejad,et al.  Clinical applications of mineral trioxide aggregate. , 1999, Journal of endodontics.

[21]  T. Jensen,et al.  Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells , 2002, Nature Biotechnology.

[22]  M. Chou,et al.  In vitro evaluation of the cytotoxicity and genotoxicity of root canal medicines on human pulp fibroblasts. , 1998, Journal of endodontics.

[23]  C. Cormier Markers of bone metabolism. , 1995, Current opinion in rheumatology.