A complementarity-based rolling friction model for rigid contacts

In this work (also, preprint ANL/MCS-P3020-0812, Argonne National Laboratory) we introduce a complementarity-based rolling friction model to characterize dissipative phenomena at the interface between moving parts. Since the formulation is based on differential inclusions, the model fits well in the context of nonsmooth dynamics, and it does not require short integration timesteps. The method encompasses a rolling resistance limit for static cases, similar to what happens for sliding friction; this is a simple yet efficient approach to problems involving transitions from rolling to resting, and vice-versa. We propose a convex relaxation of the formulation in order to achieve algorithmic robustness and stability; moreover, we show the side effects of the convexification. A natural application of the model is the dynamics of granular materials, because of the high computational efficiency and the need for only a small set of parameters. In particular, when used as a micromechanical model for rolling resistance between granular particles, the model can provide an alternative way to capture the effect of irregular shapes. Other applications can be related to real-time simulations of rolling parts in bearing and guideways, as shown in examples.

[1]  I. Vardoulakis,et al.  Degradations and Instabilities in Geomaterials , 2004 .

[2]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[3]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[4]  Hai-Sui Yu,et al.  A novel discrete model for granular material incorporating rolling resistance , 2005 .

[5]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[6]  K. Terzaghi,et al.  Soil mechanics in engineering practice , 1948 .

[7]  Bruno C. Hancock,et al.  Process modeling in the pharmaceutical industry using the discrete element method. , 2009, Journal of pharmaceutical sciences.

[8]  Masanobu Oda,et al.  Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling , 1982 .

[9]  C. Glocker,et al.  A set-valued force law for spatial Coulomb-Contensou friction , 2003 .

[10]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[11]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[12]  A. Tordesillas,et al.  Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media , 2002 .

[13]  D. Stewart Reformulations of Measure Differential Inclusions and Their Closed Graph Property , 2001 .

[14]  M. Oda,et al.  Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM , 1998 .

[15]  William John Macquorn Rankine,et al.  A manual of applied mechanics , 2022 .

[16]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[17]  C. Glocker,et al.  Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems , 2012 .

[18]  Francesco Calvetti,et al.  Micromechanical approach to slope stability analysis , 2004 .

[19]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[20]  Jean-Pierre Bardet,et al.  Observations on the effects of particle rotations on the failure of idealized granular materials , 1994 .

[21]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[22]  M. Anitescu,et al.  Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit , 2008 .

[23]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[24]  D. Stewart,et al.  Time-stepping for three-dimensional rigid body dynamics , 1999 .

[25]  C. Coulomb Théorie des machines simples (Nouv. éd.) / , en ayant égard au frottement de leurs parties et à la roideur des cordages, par C.-A. Coulomb,... Nouvelle édition... , 1821 .

[26]  C. Coulomb Théorie des machines simples, en ayant égard au frottement de leurs parties et a la roideur des cordages , 1968 .

[27]  Mihai Anitescu,et al.  A fixed-point iteration approach for multibody dynamics with contact and small friction , 2004, Math. Program..

[28]  Harald Kruggel-Emden,et al.  A study on the validity of the multi-sphere Discrete Element Method , 2008 .

[29]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[30]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[31]  M. Anitescu,et al.  A Convex Complementarity Approach for Simulating Large Granular Flows , 2010 .

[32]  M. Anitescu,et al.  A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics , 2011 .

[33]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[34]  Julius Ludwig Weisbach Mechanics of Engineering and of Machinery... , 2012 .

[35]  Mihai Anitescu,et al.  An iterative approach for cone complementarity problems for nonsmooth dynamics , 2010, Comput. Optim. Appl..

[36]  Christoph Glocker,et al.  Solving Normal Cone Inclusion Problems in Contact Mechanics by Iterative Methods , 2007 .

[37]  F. Radjai,et al.  Identification of rolling resistance as a shape parameter in sheared granular media. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[39]  Hammad Mazhar,et al.  Leveraging parallel computing in multibody dynamics , 2012 .