Efficient algorithms for discrete lattice calculations

We discuss algorithms for lattice-based computations, in particular lattice reduction, the detection of nearest neighbors, and the computation of clusters of nearest neighbors. We focus on algorithms that are most efficient for low spatial dimensions (typically d=2,3) and input data within a reasonably limited range. This makes them most useful for physically oriented numerical simulations, for example of crystalline solids. Different solution strategies are discussed, formulated as algorithms, and numerically evaluated.

[1]  M. Pitteri Geometry and symmetry of multilattices , 1998 .

[2]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[3]  Mitchell Luskin,et al.  A multilattice quasicontinuum for phase transforming materials: Cascading Cauchy Born kinematics , 2007 .

[4]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[5]  Neil J. A. Sloane,et al.  Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[7]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[8]  A. K. Lenstra,et al.  Factoring polynomials with rational coefficients , 1982 .

[9]  E I Shakhnovich,et al.  A test of lattice protein folding algorithms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[11]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[12]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[13]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[14]  R. Kannan ALGORITHMIC GEOMETRY OF NUMBERS , 1987 .

[15]  G. Parry On Essential and Non-Essential Descriptions of Multilattices , 2004 .

[16]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[17]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .