Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases"

This paper surveys methods for representing and reasoning with imperfect information. It opens with an attempt to classify the different types of imperfection that may pervade data, and a discussion of the sources of such imperfections. The classification is then used as a framework for considering work that explicitly concerns the representation of imperfect information, and related work on how imperfect information may be used as a basis for reasoning. The work that is surveyed is drawn from both the field of databases and the field of artificial intelligence. Both of these areas have long been concerned with the problems caused by imperfect information, and this paper stresses the relationships between the approaches developed in each.

[1]  Gregory M. Provan Solving Diagnostic Problems Using Extended Truth Maintenance Systems , 1988, ECAI.

[2]  Robert P. Goldman,et al.  From knowledge bases to decision models , 1992, The Knowledge Engineering Review.

[3]  Carlo Zaniolo Database relations with null values , 1982, PODS '82.

[4]  Witold Lipski,et al.  On semantic issues connected with incomplete information databases , 1979, ACM Trans. Database Syst..

[5]  Alice M. Agogino,et al.  Automated Construction of Sparse Bayesian Networks from Unstructured Probabilistic Models and Domain Information , 2013, UAI.

[6]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[7]  Joan M. Morrissey Representing and Manipulating Uncertain Data , 1992, Int. J. Man Mach. Stud..

[8]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[9]  Henri Prade,et al.  Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries , 1984, Inf. Sci..

[10]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[11]  Nils J. Nilsson,et al.  Probabilistic Logic Revisited , 1993, Artif. Intell..

[12]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[13]  John Grant,et al.  Answering Queries in Indefinite Databases and the Null Value Problem , 1986, Adv. Comput. Res..

[14]  M. Umano Retrieval From Fuzzy Database by Fuzzy Relational Algebra , 1983 .

[15]  E. F. Codd,et al.  Extending the database relational model to capture more meaning , 1979, ACM Trans. Database Syst..

[16]  Fahiem Bacchus,et al.  On probability distributions over possible worlds , 2013, UAI.

[17]  Robert A. Hummel,et al.  On the Use of the Dempster Shafer Model in Information Indexing and Retrieval Applications , 1993, Int. J. Man Mach. Stud..

[18]  Gregory F. Cooper,et al.  A Bayesian Method for Constructing Bayesian Belief Networks from Databases , 1991, UAI.

[19]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[20]  C. Froidevaux,et al.  Inheritance in semantic networks and default logic , 1988 .

[21]  Serge Abiteboul,et al.  On the representation and querying of sets of possible worlds , 1987, SIGMOD '87.

[22]  Didier Dubois,et al.  Responses to Elkan (Didier Dubois, Henri Prade, Philippe Smets) , 1994, IEEE Expert.

[23]  Philippe Smets,et al.  Implication in fuzzy logic , 1987, Int. J. Approx. Reason..

[24]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[25]  Luis Fariñas del Cerro,et al.  An Algebraic Evaluation Method for Deduction in Incomplete Data Bases , 1988, J. Log. Program..

[26]  Alessandro Saffiotti A Hybrid Framework for Representing Uncertain Knowledge , 1990, AAAI.

[27]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning and Logic Programming , 1993, IJCAI.

[28]  Didier Dubois,et al.  A Possibilistic Assumption-Based Truth Maintenance System with Uncertain Justifications, and its Application to Belief Revision , 1990, Truth Maintenance Systems.

[29]  Bruce Abramson ARCO1: An Application of Belief Networks to the Oil Market , 1991, UAI.

[30]  Mary McLeish Nilson's probabilistic entailment extended to Dempster-Shafer theory , 1988, Int. J. Approx. Reason..

[31]  Vladimir Lifschitz,et al.  Pointwise Circumscription: Preliminary Report , 1986, AAAI.

[32]  Amihai Motro,et al.  Accommodating imprecision in database systems: issues and solutions , 1990, SGMD.

[33]  Amihai Motro,et al.  Sources of Uncertainty, Imprecision, and Inconsistency in Information Systems , 1996, Uncertainty Management in Information Systems.

[34]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[35]  Dov M. Gabbay,et al.  Making inconsistency respectable: a logical framework for inconsistency in reasoning , 1991, FAIR.

[36]  John Fox,et al.  Towards a Reconciliation of Fuzzy Logic and Standard Logic , 1981, Int. J. Man Mach. Stud..

[37]  John Grant,et al.  Null Values in a Relational Data Base , 1977, Inf. Process. Lett..

[38]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[39]  B. M. Hill,et al.  Theory of Probability , 1990 .

[40]  Alessandro Saffiotti,et al.  Comparing Uncertainty Management Techniques , 1994 .

[41]  Didier Dubois,et al.  Constraint Propagation with Imprecise Conditional Probabilities , 1991, UAI.

[42]  Lotfi A. Zadeh,et al.  Fuzzy probabilities , 1996, Inf. Process. Manag..

[43]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[44]  Paul R. Cohen,et al.  Heuristic reasoning about uncertainty: an artificial intelligence approach , 1984 .

[45]  Brian R. Gaines,et al.  Fuzzy reasoning and its applications , 1981 .

[46]  Jane Grimson,et al.  Expert systems and database systems: how can they serve each other? , 1987 .

[47]  M. Howard Williams,et al.  Incomplete information in a Deductive Database , 1988, Data Knowl. Eng..

[48]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[49]  James F. Baldwin,et al.  A fuzzy relational inference language , 1984 .

[50]  J. Baldwin Support Logic Programming , 1986 .

[51]  Yang Xiang,et al.  Representation of Bayesian Networks as Relational Databases , 1994, IPMU.

[52]  John Grant,et al.  Partial Values in a Tabular Database Model , 1979, Inf. Process. Lett..

[53]  Simon Parsons,et al.  A rough set approach to reasoning under uncertainty , 1995, J. Exp. Theor. Artif. Intell..

[54]  Joan M. Morrissey,et al.  Imprecise information and uncertainty in information systems , 1990, TOIS.

[55]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[56]  Kurt Konolige,et al.  On the Relation Between Autoepistem ic Logic and Circumscription , 1989, IJCAI.

[57]  Mary McLeish Nilsson's Probabilistic Entailment Extended to Dempster-Shafer Theory , 1987, UAI.

[58]  Suk Kyoon Lee,et al.  An Extended Relational Database Model for Uncertain and Imprecise Information , 1992, VLDB.

[59]  Raymond Reiter On Closed World Data Bases , 1977, Logic and Data Bases.

[60]  V. S. Subrahmanian,et al.  Non-Monotonic Negation in Probabilistic Deductive Databases , 1991, UAI.

[61]  Scott A. Musman,et al.  A Study of Scaling Issues in Bayesian Belief Networks for Ship Classification , 1993, UAI.

[62]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[63]  Solomon Eyal Shimony,et al.  A Probabilistic Object-Oriented Data Model , 1994, Data Knowl. Eng..

[64]  Randy Goebel,et al.  Theorist: A Logical Reasoning System for Defaults and Diagnosis , 1987 .

[65]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[66]  Arie Zvieli,et al.  A Fuzzy Relational Calculus , 1986, Expert Database Conf..

[67]  Simon Parsons Hybrid models of uncertainty in protein topology prediction , 1995, Appl. Artif. Intell..

[68]  Eugene Wong,et al.  A statistical approach to incomplete information in database systems , 1982, TODS.

[69]  Kurt Konolige,et al.  On the Relation Between Default and Autoepistemic Logic , 1987, Artif. Intell..

[70]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[71]  Y. Edmund Lien Multivalued Dependencies With Null Values In Relational Data Bases , 1979, Fifth International Conference on Very Large Data Bases, 1979..

[72]  Ronald Prescott Loui,et al.  Defeat among arguments: a system of defeasible inference , 1987, Comput. Intell..

[73]  R. Dawes Judgment under uncertainty: The robust beauty of improper linear models in decision making , 1979 .

[74]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[75]  M. Howard Williams,et al.  Time and Incompleteness in a Deductive Database , 1990, IPMU.

[76]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[77]  Didier Dubois,et al.  Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision, and Variable Certainty Weights , 1994, IEEE Trans. Knowl. Data Eng..

[78]  Werner Kießling,et al.  Towards Precision of Probabilistic Bounds Propagation , 1992, UAI.

[79]  M. Smithson Ignorance and Uncertainty , 1989, Cognitive Science.

[80]  Leonid Libkin,et al.  OR-SML: A Functional Database Programming Language for Disjunctive Information and Its Applications , 1994, DEXA.

[81]  Henri Prade,et al.  Application of possibility and necessity measures to documentary information retrieval , 1986, IPMU.

[82]  Henri Prade,et al.  Lipski's approach to incomplete information databases restated and generalized in the setting of Zadeh's possibility theory , 1984, Inf. Syst..

[83]  Alessandro Saffiotti,et al.  Pulcinella: A General Tool for Propagating Uncertainty in Valuation Networks , 1991, UAI.

[84]  John L. Pollock,et al.  How to Reason Defeasibly , 1992, Artif. Intell..

[85]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[86]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[87]  J. Baldwin Automated fuzzy and probabilistic inference , 1986 .

[88]  Roberto V. Zicari,et al.  Incomplete information in object-oriented databases , 1990, SGMD.

[89]  Michael Pittarelli,et al.  Probabilistic databases for decision analysis , 1990, Int. J. Intell. Syst..

[90]  Didier Dubois,et al.  Resolution principles in possibilistic logic , 1990, Int. J. Approx. Reason..

[91]  Gerhard Brewka,et al.  Nonmonotonic Reasoning: Logical Foundations of Commonsense By Gerhard Brewka (Cambridge University Press, 1991) , 1991, SGAR.

[92]  Robert P. Goldman,et al.  Integrating Model Construction and Evaluation , 1992, UAI.

[93]  W. Bruce Croft,et al.  Uncertainty in Information Retrieval Systems , 1996, Uncertainty Management in Information Systems.

[94]  Billie S. Goldstein Constraints on Null Values in Relational Databases , 1981, VLDB.

[95]  Gregory M. Provan,et al.  Dynamic Network Updating Techniques for Diagnostic Reasoning , 1991, UAI.

[96]  Piero P. Bonissone,et al.  Editorial: Reasoning with Uncertainty in Expert Systems , 1985, Int. J. Man Mach. Stud..

[97]  Paul Dagum,et al.  Forecasting Sleep Apnea with Dynamic Network Models , 1993, UAI.

[98]  Fangzhen Lin,et al.  Argument Systems: A Uniform Basis for Nonmonotonic Reasoning , 1989, KR.

[99]  Philippe Besnard,et al.  An Introduction to Default Logic , 1989, Symbolic Computation.

[100]  B. Buckles,et al.  A fuzzy representation of data for relational databases , 1982 .

[101]  C. J. van Rijsbergen,et al.  A Non-Classical Logic for Information Retrieval , 1997, Comput. J..

[102]  Kathryn B. Laskey,et al.  Assumptions, Beliefs and Probabilities , 1989, Artif. Intell..

[103]  M. H. van Emden,et al.  Quantitative Deduction and its Fixpoint Theory , 1986, J. Log. Program..

[104]  Mary McLeish,et al.  Probabilistic Logic: Some Comments and Possible use for Nonmonotonic Reasoning , 1988, UAI 1988.

[105]  Charles Elkan,et al.  The paradoxical success of fuzzy logic , 1993, IEEE Expert.

[106]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[107]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[108]  D. Heckerman,et al.  Toward Normative Expert Systems: Part I The Pathfinder Project , 1992, Methods of Information in Medicine.

[109]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[110]  Werner Kießling,et al.  New direction for uncertainty reasoning in deductive databases , 1991, SIGMOD '91.

[111]  M. Howard Williams,et al.  Designing SQUIRREL: An Extended SQL for a Deductive Database System , 1990, Comput. J..

[112]  Jian-Yun Nie,et al.  Towards a probabilistic modal logic for semantic-based information retrieval , 1992, SIGIR '92.

[113]  Hector Garcia-Molina,et al.  A Probalilistic Relational Data Model , 1990, EDBT.

[114]  E. F. Codd,et al.  Understanding Relations (Installment #7) , 1974, FDT Bull. ACM SIGFIDET SIGMOD.

[115]  Didier Dubois,et al.  Theorem Proving Under Uncertainty - A Possibility Theory-based Approach , 1987, IJCAI.

[116]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[117]  Alessandro Saffiotti A Belief-Function Logic , 1992, AAAI.

[118]  John Fox,et al.  Decision Theory and Autonomous Systems , 1991, Conference on Uncertainty in Artificial Intelligence.

[119]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[120]  John Grant,et al.  Incomplete Information in a Relational Database , 1980, Fundamenta Informaticae.

[121]  Yehoshua Sagiv,et al.  Can we use the universal instance assumption without using nulls? , 1981, SIGMOD '81.

[122]  Prakash P. Shenoy,et al.  Using possibility theory in expert systems , 1992 .

[123]  James F. Baldwin,et al.  Evidential support logic programming , 1987 .

[124]  John Fox,et al.  A LOGIC OF ARGUMENTATION FOR REASONING UNDER UNCERTAINTY , 1995, Comput. Intell..

[125]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .

[126]  Michael Pittarelli,et al.  An Algebra for Probabilistic Databases , 1994, IEEE Trans. Knowl. Data Eng..

[127]  Robert P. Goldman,et al.  Dynamic construction of belief networks , 1990, UAI.

[128]  Duncan Fyfe Gillies,et al.  Objective Probabilities in Expert Systems , 1993, Artif. Intell..

[129]  Kwong-Sak Leung,et al.  A Fuzzy Expert Database System , 1989, Data Knowl. Eng..

[130]  Jochen Heinsohn,et al.  A Hybrid Approach for Modeling Uncertainty in Terminological Logics , 1991, ECSQARU.

[131]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[132]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[133]  David L. Poole,et al.  Representing Bayesian Networks Within Probabilistic Horn Abduction , 1991, UAI.

[134]  F. E. Petry,et al.  Extension of the Fuzzy Database with Fuzzy Arithmetic , 1983 .

[135]  Lotfi A. Zadeh,et al.  Commonsense Knowledge Representation Based on Fuzzy Logic , 1983, Computer.

[136]  Roy George,et al.  An Object-Oriented Data Model to Represent Uncertainty in Coupled Artificial Intelligence-Database Systems , 1991, The Next Generation of Information Systems.

[137]  Steen Andreassen,et al.  MUNIN - A Causal Probabilistic Network for Interpretation of Electromyographic Findings , 1987, IJCAI.

[138]  Yannis Vassiliou,et al.  Null values in data base management a denotational semantics approach , 1979, SIGMOD '79.

[139]  Thomas Lukasiewicz The TOP Database Model − Taxonomy‚ Object−Orientation and Probability , 1994 .

[140]  Gregory M. Provan,et al.  Dynamic Network Construction and Updating Techniques for the Diagnosis of Acute Abdominal Pain , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[141]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[142]  Didier Dubois,et al.  Handling uncertain knowledge in an ATMS using possibilistic logic , 1991 .

[143]  John Fox,et al.  Three Arguments for Extending the Framework of Probability , 1985, UAI.

[144]  David W. Etherington Reasoning With Incomplete Information , 1988 .

[145]  Henri Prade,et al.  Fuzzy relational databases: Representational issues and reduction using similarity measures , 1987 .

[146]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[147]  Steen Andreassen,et al.  A munin network for the median nerve - a case study on loops , 1989, Appl. Artif. Intell..

[148]  Trevor P Martin,et al.  The implementation of fprolog—a fuzzy prolog interpreter , 1987 .

[149]  Eric Horvitz,et al.  Dynamic Network Models for Forecasting , 1992, UAI.

[150]  Henri Prade,et al.  Representation of soft constraints and fuzzy attribute values by means of possibility distributions in databases , 1985, RIAO.

[151]  Alessandro Saffiotti,et al.  An AI view of the treatment of uncertainty , 1987, The Knowledge Engineering Review.

[152]  Doron Rotem,et al.  Uncertain, Incomplete, and Inconsistent Data in Scientific and Statistical Databases , 1996, Uncertainty Management in Information Systems.

[153]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[154]  Susan Haack,et al.  Do we need “fuzzy logic”? , 1979 .

[155]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[156]  Madan G. Singh,et al.  Decision support systems and qualitative reasoning : proceedings of the IMACS International Workshop on Decision Support Systems and Qualitative Reasoning, Toulouse, France, 13-15 March 1991 , 1991 .

[157]  Didier Dubois,et al.  Necessity Measures and the Resolution Principle , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[158]  Didier Dubois,et al.  Inference in Possibilistic Hypergraphs , 1990, IPMU.

[159]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[160]  Gregory F. Cooper,et al.  An Entropy-driven System for Construction of Probabilistic Expert Systems from Databases , 1990, UAI.

[161]  Dario Lucarella,et al.  Information Retrieval Based on Fuzzy Reasoning , 1993, Data Knowl. Eng..

[162]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[163]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[164]  V. S. Subrahmanian,et al.  Probabilistic Logic Programming , 1992, Inf. Comput..

[165]  V. S. Subrahmanian,et al.  Empirical Probabilities in Monadic Deductive Databases , 1992, UAI.

[166]  J. Ross Quinlan,et al.  Inferno: A Cautious Approach To Uncertain Inference , 1986, Comput. J..

[167]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[168]  Michael Pittarelli,et al.  The Theory of Probabilistic Databases , 1987, VLDB.

[169]  Wilson X. Wen From Relational Databases to Belief Networks , 1991, UAI.

[170]  Kristian G. Olesen,et al.  HUGIN - a Shell for Building Belief Universes for Expert Systems , 1989, IJCAI 1989.

[171]  Yannis Vassiliou Functional Dependencies and Incomplete Information , 1980, VLDB.

[172]  David Poole,et al.  Explanation and prediction: an architecture for default and abductive reasoning , 1989, Comput. Intell..