Checking strict positivity of Kraus maps is NP-hard

Basic properties in Perron-Frobenius theory are strict positivity, primitivityand irreducibility. Whereas for nonnegative matrices, these properties are equivalent to elementary graph properties which can be checked in polynomial time, we show that for Kraus maps- the noncommutative generalization of stochastic matrices - checking strict positivity (whether the map sends the cone to its interior) is NP-hard. The proof proceeds by reducing to the latter problem the existence of a non-zero solution of a special system of bilinear equations. The complexity of irreducibility and primitivity is also discussed in the noncommutative setting.

[1]  Jeffrey Shallit,et al.  The Computational Complexity of Some Problems of Linear Algebra , 1996, J. Comput. Syst. Sci..

[2]  U. Groh Some observations on the spectra of positive operators on finite-dimensional C∗-algebras , 1982 .

[3]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[4]  Gilles Villard,et al.  Solving sparse rational linear systems , 2006, ISSAC '06.

[5]  Stephen P. Boyd,et al.  Rank minimization and applications in system theory , 2004, Proceedings of the 2004 American Control Conference.

[6]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[7]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Alain Sarlette,et al.  Consensus for Quantum Networks: Symmetry From Gossip Interactions , 2013, IEEE Transactions on Automatic Control.

[10]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  P. Rosenthal,et al.  The simplest proof of Burnside's theorem on matrix algebras , 2004 .

[13]  D. Farenick Irreducible positive linear maps on operator algebras , 1996 .

[14]  M. Cao,et al.  A Lower Bound on Convergence of a Distributed Network Consensus Algorithm , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[16]  Mikel Sanz,et al.  A Quantum Version of Wielandt's Inequality , 2009, IEEE Transactions on Information Theory.

[17]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[18]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[19]  Weiyu Xu,et al.  Null space conditions and thresholds for rank minimization , 2011, Math. Program..

[20]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .

[21]  Jesús A. De Loera,et al.  Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz , 2009, Combinatorics, Probability and Computing.

[22]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[23]  Eric V. Denardo,et al.  Periods of Connected Networks and Powers of Nonnegative Matrices , 1977, Math. Oper. Res..

[24]  László Lovász,et al.  Stable sets and polynomials , 1994, Discret. Math..

[25]  S. Onn,et al.  Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and the Nullstellensatz , 2007, 0706.0578.

[26]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[27]  G. P. Barker,et al.  Algebraic Perron-Frobenius theory , 1975 .

[28]  Michael M. Wolf,et al.  Hilbert's projective metric in quantum information theory , 2011, 1102.5170.

[29]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[30]  Jean-Charles Faugère,et al.  On the complexity of the generalized MinRank problem , 2011, J. Symb. Comput..