NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500?Cyg, V1974?Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500?Cyg. V1500?Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500?Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

[1]  M. Hamuy,et al.  Recent observations of nova GQ Mus 1983 , 1995 .

[2]  U. Kolb,et al.  Mass transfer cycles in close binaries with evolved companions , 1997 .

[3]  A. Walker,et al.  The photometric period of the recurrent Nova T Pyxidis , 1992 .

[4]  J. Patterson,et al.  The evolution of cataclysmic and low-mass X-ray binaries. , 1984 .

[5]  A. Bianchini,et al.  NEW X-RAY OBSERVATIONS OF THE OLD NOVA CP PUPPIS AND OF THE MORE RECENT NOVA V351 PUPPIS , 2008, 0809.3992.

[6]  J. W. Truran,et al.  On the frequency of occurrence of oxygen-neon-magnesium white dwarfs in classical nova systems , 1986 .

[7]  B. Warner Where have all the novae gone , 2006 .

[8]  Arne A. Henden,et al.  CATALOG OF 93 NOVA LIGHT CURVES: CLASSIFICATION AND PROPERTIES , 2010, 1004.3698.

[9]  B. Warner CP Puppis and V1500 Cygni , 1985 .

[10]  B. Schaefer COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.

[11]  Christopher D. Martin,et al.  An ancient nova shell around the dwarf nova Z Camelopardalis , 2007, Nature.

[12]  J. Liebert,et al.  Detection of the hot white dwarf in the magnetic nova V1500 Cygni with the Hubble Space Telescope , 1995 .

[13]  J. P. Osborne,et al.  Swift X-ray observations of classical novae , 2007 .

[14]  J.-U. Ness,et al.  V723 CASSIOPEIA STILL ON IN X-RAYS: A BRIGHT SUPER SOFT SOURCE 12 YEARS AFTER OUTBURST , 2008, 0801.3288.

[15]  A. Norton,et al.  The decline in irradiation from the white dwarf in old novae , 2008 .

[16]  E. Leibowitz,et al.  V4633 Sgr – a probable second asynchronous polar classical nova , 2008, 0805.1444.

[17]  G. Schmidt,et al.  Time-resolved Hubble Space Telescope Spectroscopy of Four Eclipsing Magnetic Cataclysmic Variables , 2000, astro-ph/0010011.

[18]  Gary D. Schmidt,et al.  V1500 Cygni - Discovery of a magnetic nova , 1988 .

[19]  R. Webbink,et al.  Unraveling the oldest and faintest recovered nova - CK Vulpeculae (1670) , 1985 .

[20]  H. Duerbeck The final decline of novae and the hibernation hypothesis , 1992 .

[21]  Magnetism in Isolated and Binary White Dwarfs , 2000 .

[22]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[23]  I. Hachisu,et al.  A Universal Decline Law of Classical Novae. III. GQ Muscae 1983 , 2008, 0806.4253.

[24]  Izumi Hachisu,et al.  A PREDICTION FORMULA OF SUPERSOFT X-RAY PHASE OF CLASSICAL NOVAE , 2009, 0912.1136.

[25]  University of Sydney,et al.  Nova Sagittarii 1998 (V4633 Sgr): a permanent superhump system or an asynchronous polar? , 2001, astro-ph/0109149.

[26]  M. Shara,et al.  The recovery of CK Vulpeculae (Nova 1670) - The oldest 'old nova' , 1982 .

[27]  G. Ferland,et al.  Heavy element abundances of Nova Cygni 1975. , 1978 .

[28]  J. Thorstensen,et al.  V405 Peg (RBS 1955): A Nearby, Low-Luminosity Cataclysmic Binary , 2009, 0904.3127.

[29]  A. Henden,et al.  V446 Herculis (Nova Her 1960) Is an Optical Triple: Implications for the Resumption of Dwarf Nova Outbursts following the Nova , 1998 .

[30]  K. Nomoto,et al.  Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.

[31]  David J. Field A semi-classical description of radiation transport in many-level astrophysical masers: competitive gain in OH hyperfine transitions , 1985 .

[32]  M. Orio,et al.  X-ray emission from classical and recurrent-novae observed with ROSAT , 2001 .

[33]  Brian Warner Classical Novae: Properties of novae: an overview , 2008 .

[34]  G. Schmidt,et al.  Synchronization of the magnetic Nova V1500 Cygni , 1991 .

[35]  J. Thorstensen,et al.  Two Galactic Supersoft X‐Ray Binaries: V Sagittae and T Pyxidis , 1998 .

[36]  S. Kimeswenger,et al.  The enigma of the oldest ‘nova’: the central star and nebula of CK Vul , 2007, 0709.3746.

[37]  A. Shafter,et al.  On the Nova Rate in the Galaxy , 1997 .

[38]  The Peak Brightness of SN1974G in NGC4414 and the Hubble Constant , 1997, astro-ph/9808157.

[39]  B. Schaefer A Test of Nova Trigger Theory , 2005 .

[40]  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THERMALLY STABLE NUCLEAR BURNING ON ACCRETING WHITE DWARFS , 2007 .

[41]  James A. Deyoung,et al.  The Photometric Period of V1974 Cygni (Nova Cygni 1992) , 1994 .

[42]  H. Ritter,et al.  Mass transfer cycles in cataclysmic variables , 1995 .

[43]  H. Ögelman,et al.  ROSAT Observation of the Old Classical Nova CP Puppis , 1995 .

[44]  M. Cropper,et al.  Mapping the accretion region in AM Her Systems: ST LMi , 1994 .

[45]  R. Di Stefano,et al.  Formation and evolution of luminous supersoft X-ray sources , 1994 .

[46]  L. Bildsten,et al.  Classical Novae as a Probe of the Cataclysmic Variable Population , 2005, astro-ph/0503556.

[47]  Sumner Starrfield,et al.  ROSAT X-ray observations of nova V1974 Cygni: The rise and fall of the brightest supersoft X-ray source , 1996 .

[48]  A. Retter,et al.  The detection of a 1.4-h period in RW Ursa Minoris - candidate for shortest recorded orbital period nova , 2000, astro-ph/0011272.

[49]  K. Mukai,et al.  An observational case against nova hibernation , 1992 .

[50]  W. G. Dillon,et al.  THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY , 2011, 1109.0065.

[51]  A. Retter,et al.  Photometric and spectroscopic study of nova Cassiopeiae 1995 (V723 Cas) , 2007 .

[52]  Marc W. Buie,et al.  Pluto's light curve in 1933–1934 , 2008 .

[53]  G. Sala,et al.  XMM-Newton Observations of Nova Sagittarii 1998 , 2007, 0704.3166.

[54]  I. Hachisu,et al.  A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.

[55]  Rebecca G. Martin,et al.  Hibernation revived by weak magnetic braking , 2005, astro-ph/0609199.

[56]  Nova-induced Mass Transfer Variations , 2001, astro-ph/0108322.

[57]  H. Ritter,et al.  Global analysis of mass transfer cycles in cataclysmic variables , 1996 .

[58]  O. Yaron,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .

[59]  R. Gilmozzi,et al.  The secrets of T Pyxidis - II. A recurrent nova that will not become a SN Ia , 2008, 0904.1146.

[60]  M. Shara RECENT PROGRESS IN UNDERSTANDING THE ERUPTIONS OF CLASSICAL NOVAE , 1989 .

[61]  H. Ögelman,et al.  Detection of supersoft X-ray emission from GQ Muscae nine years after a nova outburst , 1993, Nature.

[62]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[63]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[64]  B. Schaefer The Peak Brightness of SN1937C in IC4182 and the Hubble Constant , 1993 .

[65]  P. A. Charles,et al.  First science with the Southern African Large Telescope: peering at the accreting polar caps of the eclipsing polar SDSS J015543.40+002807.2 , 2006 .

[66]  K. Serkowski,et al.  Changes in Polarization, Light and Colour during the Outburst Stage of the Recurrent Nova T Pyxidis , 1967, Nature.

[67]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[68]  M. Livio,et al.  Links between dwarf and classical novae, and implications for the space densities and evolution of cataclysmic binaries , 1986 .

[69]  B. Warner Cataclysmic Variable Stars by Brian Warner , 1995 .

[70]  T. Iijima Spectral evolution of the slowest classical nova V723 Cassiopeiae in the decline stage , 2006 .

[71]  M. Shara,et al.  THE NOVA SHELL AND EVOLUTION OF THE RECURRENT NOVA T PYXIDIS , 2009, 0906.0933.

[72]  R. Honeycutt,et al.  Detecting Outflows from Cataclysmic Variables in the Optical , 2004 .

[73]  H. Ögelman,et al.  The soft X-ray turnoff of Nova Muscae 1983 , 1995 .

[74]  J. Walsh,et al.  Infrared and optical observations of Nova MUS 1983 , 1984 .

[75]  J. Steiner,et al.  On the magnetic nature of GQ MUSCAE , 1994 .

[76]  A. Zijlstra,et al.  CK Vul: reborn perhaps, but not hibernating , 2002 .

[77]  James MacDonald,et al.  The decline and fall of classical novae , 1985 .

[78]  J. Greiner,et al.  XMM-Newton observations of Nova LMC 2000 , 2003 .

[79]  B. Schaefer,et al.  THE BEHAVIOR OF NOVAE LIGHT CURVES BEFORE ERUPTION , 2009, 0909.4289.

[80]  P. Szkody BVRJK observations of Northern Hemisphere old novae , 1994 .

[81]  C. Tappert,et al.  RW Ursae Minoris (1956): An Evolving Postnova System , 2003 .

[82]  Bradley E. Schaefer,et al.  Discovery of a Second Nova Eruption of V2487 Ophiuchi , 2009, 0908.2143.

[83]  Margarita Hernanz Classical nova explosions , 2002 .

[84]  J. Steiner,et al.  The Photometric Period of Nova MUSCAE 1983 , 1989 .

[85]  E. L. Robinson Preeruption light curves of novae. , 1975 .