Bursting Oscillations and Experimental Verification of a Rucklidge System

Bursting oscillations are ubiquitous in multi-time scale systems and have attracted widespread attention in recent years. However, research on experimental demonstration of the bursting oscillations induced by delayed bifurcation is very rarely reported. In this paper, a parametrically driven Rucklidge system is introduced and a distinct delayed behavior is observed when the time-varying parameter passes through the pitchfork bifurcation point. Different bursting patterns induced by such a delayed behavior are numerically investigated under different excitation amplitudes based on the fast–slow analysis method. Furthermore, in order to reproduce the bursting electronic signals and explore the underlying formation mechanisms experimentally, a real physical circuit of the parametrically driven Rucklidge system is developed by using off-the-shelf electronic devices. The real-time measurement results such as time series, phase portraits and transformed phase portraits are in good qualitative agreement with those obtained from the numerical computations. The experimental evidence to verify bursting oscillations induced by delayed pitchfork bifurcation is thus provided in this study.