Quantum Two Player Game in Thermal Environment

A two-player quantum game is considered in the presence of thermal decoherence. It is shown how the thermal environment modeled in terms of rigorous Davies approach affects payoffs of the players. The conditions for either beneficial or pernicious effect of decoherence are identified. The general considerations are exemplified by the quantum version of Prisoner Dilemma.

[1]  Peter Bruza,et al.  The Role of Non-Factorizability in Determining "Pseudo-Classical "Non-separability , 2010, AAAI Fall Symposium: Quantum Informatics for Cognitive, Social, and Semantic Processes.

[2]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[3]  Jan Sładkowski,et al.  Quantum games in finance , 2004 .

[4]  Derek Abbott,et al.  Advantage of a quantum player over a classical one in 2 × 2 quantum games , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Haoyang Wu Quantum mechanism helps agents combat "bad" social choice rules , 2010 .

[6]  Edward W. Piotrowski,et al.  An Invitation to Quantum Game Theory , 2002, ArXiv.

[7]  Jan Sladkowski,et al.  Cooperative quantum Parrondo’s games , 2012, 1207.6954.

[8]  Dariusz Kurzyk,et al.  Decoherence effects in the quantum qubit flip game using Markovian approximation , 2013, Quantum Inf. Process..

[9]  Lloyd Christopher L. Hollenberg,et al.  Multiplayer quantum Minority game with decoherence , 2005, SPIE International Symposium on Fluctuations and Noise.

[10]  Jan Sladkowski,et al.  General Model for an Entanglement-Enhanced Composed Quantum Game on a Two-Dimensional Lattice , 2013, 1306.4506.

[11]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[12]  J. Sladkowski Giffen paradoxes in quantum market games , 2002 .

[13]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[14]  Derek Abbott,et al.  Quantum games with decoherence , 2004 .

[15]  P. Hänggi,et al.  Negativity and quantum discord in Davies environments , 2012, 1209.1536.

[16]  Vladimir G Ivancevic,et al.  Quantum Neural Computation , 2009 .

[17]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[18]  J. Sladkowski,et al.  Quantum Prisoner’s Dilemma game on hypergraph networks , 2013 .

[19]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[20]  M. Sentís Quantum theory of open systems , 2002 .

[21]  A. Rapoport,et al.  Prisoner's Dilemma , 1965 .

[22]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[23]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[24]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[25]  Derek Abbott,et al.  Constructing quantum games from symmetric non-factorizable joint probabilities , 2010, 1005.5262.

[26]  Peter Hänggi,et al.  Geometric phase as a determinant of a qubit– environment coupling , 2010, Quantum Inf. Process..

[27]  E. W. Piotrowski,et al.  Quantum Auctions: Facts and Myths ⋆ , 2007, 0709.4096.

[28]  Jerry S. Kelly Social Choice Rules , 1988 .

[29]  Leong Chuan Kwek,et al.  Quantum prisoner dilemma under decoherence , 2003 .

[30]  Jerzy Dajka,et al.  Temperature-independent teleportation of qubits in Davies environments , 2015, Quantum Inf. Process..

[31]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[32]  K. Lendi,et al.  Davies theory for reservoir-induced entanglement in a bipartite system , 2007 .

[33]  M. Fannes,et al.  Davies maps for qubits and qutrits , 2009, 0911.5607.

[34]  Haoyang Wu Quantum Mechanism Helps Agents Combat with 'Bad' Social Choice Rules , 2011 .

[35]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .