Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice

[1]  Candela Sánchez-Bellot,et al.  More Than Reels: Cajal-Retzius Cells Become Active , 2022, Epilepsy currents.

[2]  P. Sætrom,et al.  Persistence of Cajal-Retzius cells in the postnatal hippocampus is required for development of dendritic spines of CA1 pyramidal cells , 2022, bioRxiv.

[3]  G. Maccaferri,et al.  Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors , 2022, Cell reports.

[4]  A. Newell,et al.  Inhibition of progesterone receptor activity during development increases reelin-immunoreactivity in Cajal-Retzius cells, alters synaptic innervation in neonatal dentate gyrus, and impairs episodic-like memory in adulthood , 2020, Hormones and Behavior.

[5]  Manuel Valero,et al.  Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations , 2020, bioRxiv.

[6]  Carlina Duan Programmed , 2020, Pleiades: Literature in Context.

[7]  G. Maccaferri,et al.  A Toolbox of Criteria for Distinguishing Cajal–Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus , 2020, eNeuro.

[8]  M. C. Angulo,et al.  Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring , 2019, eLife.

[9]  P. Codogno,et al.  Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline , 2019, Current Biology.

[10]  A. Pierani,et al.  Cortical developmental death: selected to survive or fated to die , 2018, Current Opinion in Neurobiology.

[11]  E. D. Kirby,et al.  Novel Object Recognition and Object Location Behavioral Testing in Mice on a Budget. , 2018, Journal of visualized experiments : JoVE.

[12]  Tamra I. Neblett,et al.  Experience-Dependent Regulation of Cajal–Retzius Cell Networks in the Developing and Adult Mouse Hippocampus , 2018, Cerebral cortex.

[13]  M. C. Angulo,et al.  Targeted Inactivation of Bax Reveals a Subtype-Specific Mechanism of Cajal-Retzius Neuron Death in the Postnatal Cerebral Cortex. , 2016, Cell reports.

[14]  M. Valderrama,et al.  Altered Oscillatory Dynamics of CA1 Parvalbumin Basket Cells during Theta–Gamma Rhythmopathies of Temporal Lobe Epilepsy , 2016, eNeuro.

[15]  A. Pierani,et al.  Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture , 2016, Neuron.

[16]  A. Pierani,et al.  Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal‐Retzius cells , 2016, Developmental neurobiology.

[17]  Thomas Klausberger,et al.  Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal , 2016, Neuron.

[18]  J. Lübke,et al.  Developmental Profile, Morphology, and Synaptic Connectivity of Cajal–Retzius Cells in the Postnatal Mouse Hippocampus , 2015, Cerebral cortex.

[19]  A. Pierani,et al.  Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas , 2015, Current Biology.

[20]  Silvio C. E. Tosatto,et al.  Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy. , 2015, American journal of human genetics.

[21]  A. Depaulis,et al.  Revisiting hippocampal sclerosis in mesial temporal lobe epilepsy according to the "two-hit" hypothesis. , 2015, Revue neurologique.

[22]  Z. Molnár,et al.  Development, evolution and pathology of neocortical subplate neurons , 2015, Nature Reviews Neuroscience.

[23]  Larry R Squire,et al.  Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. , 2014, Cell reports.

[24]  H. Luhmann,et al.  Cajal–Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century , 2014, Neuroscience.

[25]  A. Depaulis,et al.  Long-term modifications of epileptogenesis and hippocampal rhythms after prolonged hyperthermic seizures in the mouse , 2014, Neurobiology of Disease.

[26]  J. D. del Río,et al.  Historical first descriptions of Cajal–Retzius cells: from pioneer studies to current knowledge , 2014, Front. Neuroanat..

[27]  Thomas Klausberger,et al.  Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus , 2014, Neuron.

[28]  M. Inostroza,et al.  Specific Impairment of “What-Where-When” Episodic-Like Memory in Experimental Models of Temporal Lobe Epilepsy , 2013, The Journal of Neuroscience.

[29]  J. Lübke,et al.  Morphology, input–output relations and synaptic connectivity of Cajal–Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice , 2013, Brain Structure and Function.

[30]  G. Maccaferri,et al.  Novel GABAergic Circuits Mediating Excitation/Inhibition of Cajal-Retzius Cells in the Developing Hippocampus , 2013, The Journal of Neuroscience.

[31]  Pablo Lema,et al.  Early-Life Stress Is Associated with Gender-Based Vulnerability to Epileptogenesis in Rat Pups , 2012, PloS one.

[32]  M. Drew,et al.  4‐ to 6‐week‐old adult‐born hippocampal neurons influence novelty‐evoked exploration and contextual fear conditioning , 2012, Hippocampus.

[33]  B. Liu,et al.  Inducible Genetic Lineage Tracing of Cortical Hem Derived Cajal-Retzius Cells Reveals Novel Properties , 2011, PloS one.

[34]  H. Steller,et al.  Programmed Cell Death in Animal Development and Disease , 2011, Cell.

[35]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[36]  G. Barker,et al.  When Is the Hippocampus Involved in Recognition Memory? , 2011, The Journal of Neuroscience.

[37]  E. Grove,et al.  Timing of cortical interneuron migration is influenced by the cortical hem. , 2011, Cerebral cortex.

[38]  S. Charpier,et al.  Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy , 2010, The Journal of Neuroscience.

[39]  E. Ferrea,et al.  Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam , 2010, Neuroscience.

[40]  A. Pierani,et al.  A Novel Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral Cortical Neuroepithelium , 2010, PLoS biology.

[41]  C. Portera-Cailliau,et al.  Fate of Cajal–Retzius Neurons in the Postnatal Mouse Neocortex , 2010, Front. Neuroanat..

[42]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[43]  G. Meyer,et al.  DeltaNp73 regulates neuronal survival in vivo , 2009, Proceedings of the National Academy of Sciences.

[44]  S. Spence,et al.  The Role of Epilepsy and Epileptiform EEGs in Autism Spectrum Disorders , 2009, Pediatric Research.

[45]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[46]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[47]  C. Alvarez,et al.  Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus , 2008, PloS one.

[48]  J. Bachevalier,et al.  Memory for spatial location and object‐place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex , 2008, Hippocampus.

[49]  Ivica Kostović,et al.  Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? , 2007, Neuroscience & Biobehavioral Reviews.

[50]  Naoki Nitta,et al.  Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus , 2006, The Journal of Neuroscience.

[51]  R. Browning,et al.  Reeler Homozygous Mice Exhibit Enhanced Susceptibility to Epileptiform Activity , 2006, Epilepsia.

[52]  Palma Iannarelli,et al.  Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage , 2006, Nature Neuroscience.

[53]  S. Korsmeyer,et al.  Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Love Two hit hypothesis for temporal lobe epilepsy , 2005, The Lancet Neurology.

[55]  Sébastien Vigneau,et al.  Multiple origins of Cajal-Retzius cells at the borders of the developing pallium , 2005, Nature Neuroscience.

[56]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[57]  M. Frotscher,et al.  Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. , 2003, Cerebral cortex.

[58]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[59]  M. Frotscher,et al.  Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy , 2002, The Journal of Neuroscience.

[60]  A. Depaulis,et al.  Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy , 2002, Neuroscience.

[61]  O. Wiestler,et al.  Ammon's Horn Sclerosis: A Maldevelopmental Disorder Associated with Temporal Lobe Epilepsy , 2002, Brain pathology.

[62]  M. Frotscher,et al.  Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: Evidence for an increased survival of Cajal‐Retzius cells , 2001, The Journal of comparative neurology.

[63]  R. Garbelli,et al.  Cajal-Retzius cell density as marker of type of focal cortical dysplasia , 2001, Neuroreport.

[64]  R. D'Hooge,et al.  Applications of the Morris water maze in the study of learning and memory , 2001, Brain Research Reviews.

[65]  P. Rakić,et al.  Development of Layer I Neurons in the Primate Cerebral Cortex , 2001, The Journal of Neuroscience.

[66]  S. Sisodiya,et al.  Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. , 2001, Brain : a journal of neurology.

[67]  J. Buccafusco Methods of Behavior Analysis in Neuroscience , 2000 .

[68]  Jim J. Hagan,et al.  Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains , 1999, Behavioural Brain Research.

[69]  A. Fairén,et al.  Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex , 1998, The Journal of comparative neurology.

[70]  H. Supèr,et al.  Involvement of Distinct Pioneer Neurons in the Formation of Layer-Specific Connections in the Hippocampus , 1998, The Journal of Neuroscience.

[71]  M. Frotscher,et al.  A role for Cajal–Retzius cells and reelin in the development of hippocampal connections , 1997, Nature.

[72]  E. G. Jones,et al.  Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. , 1996, Archives of general psychiatry.

[73]  D. Spencer,et al.  Entorhinal‐Hippocampal Interactions in Medial Temporal Lobe Epilepsy , 1994, Epilepsia.

[74]  H. Supèr,et al.  The organization of the embronic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI , 1994, The Journal of comparative neurology.

[75]  H. Supèr,et al.  Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone , 1994, The Journal of comparative neurology.

[76]  P. Derer,et al.  Cajal-retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy , 1990, Neuroscience.

[77]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[78]  T. Yamamoto,et al.  Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons , 1981, Brain Research Bulletin.

[79]  S. Irwin,et al.  Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse , 1968, Psychopharmacologia.

[80]  John L.R. Rubenstein,et al.  Cellular migration and formation of neuronal connections , 2013 .

[81]  D. Falconer Two new mutants, ‘trembler’ and ‘reeler’, with neurological actions in the house mouse (Mus musculus L.) , 2008, Journal of Genetics.

[82]  P. Kalus,et al.  Cortical layer I changes in schizophrenia: a marker for impaired brain development? , 2005, Journal of Neural Transmission.

[83]  C. Elger,et al.  An increase of hippocampal calretinin-immunoreactive neurons correlates with early febrile seizures in temporal lobe epilepsy , 1999, Acta Neuropathologica.

[84]  J. D. del Río,et al.  Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. , 1995, Cerebral cortex.