Transition metal complexes as molecular machine prototypes.

The field of molecular machines, i.e. multicomponent systems able to undergo large amplitude motions under the action of an external signal, has experienced a spectacular development since the beginning of the 1990s. Transition metal complexes have played an important role in this context, often as components of catenanes and rotaxanes. The present tutorial review will discuss a few systems of this type, taken from the contributions of our group or from others. The stimulus responsible for the controlled motion of the machine can be chemical, electrochemical, or photochemical. Examples of these three categories will be considered.

[1]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[2]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[3]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[5]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[6]  J. Sauvage,et al.  Building [2]Catenanes around a Tris(diimine)ruthenium(2+) ([Ru(diimine)~3]^2^+) Complex Core Used as Template , 2003 .

[7]  Abraham Shanzer,et al.  Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes , 1995, Nature.

[8]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[9]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[10]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[11]  O. Miyatake,et al.  Blocked photochromism of diarylethenes , 1992 .

[12]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[13]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[14]  P. Pallavicini,et al.  Molecular machines based on metal ion translocation. , 2001, Accounts of chemical research.

[15]  Seiji Shinkai,et al.  Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion , 1981 .

[16]  Jean-Pierre Sauvage,et al.  A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. , 2004, Chemical communications.

[17]  Vincenzo Balzani,et al.  A LIGHT-FUELED PISTON CYLINDER MOLECULAR-LEVEL MACHINE , 1998 .

[18]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[19]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[20]  J. Libman,et al.  Molecular Redox-Switches by Ligand Exchange† , 1996 .

[21]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[22]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[23]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[24]  Agnieszka Więckowska,et al.  An Electrochemically Controlled Molecular Shuttle , 2004 .

[25]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[26]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[27]  Angelo Taglietti,et al.  A sleeping host awoken by its guest: recognition and sensing of imidazole-containing molecules based on double Cu2+ translocation inside a polyaza macrocycle. , 2004, Angewandte Chemie.

[28]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[29]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[30]  Angelo Taglietti,et al.  Signal amplification by a fluorescent indicator of a pH-driven intramolecular translocation of a copper(II) ion. , 2002, Angewandte Chemie.

[31]  Jean-Pierre Sauvage,et al.  Photochemical expulsion of a Ru(phen)2 unit from a macrocyclic receptor and its thermal reco-ordination , 2001 .

[32]  T. Meyer,et al.  Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion , 1982 .