Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3

Linear codes with complementary duals (LCD) are linear codes whose intersection with their dual are trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Nonbinary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. In this paper, we introduce a general construction of LCD codes from any linear codes. Further, we show that any linear code over $\mathbb F_{q} (q>3)$ is equivalent to a Euclidean LCD code and any linear code over $\mathbb F_{q^{2}} (q>2)$ is equivalent to a Hermitian LCD code. Consequently an $[n,k,d]$ -linear Euclidean LCD code over $\mathbb F_{q}$ with $q>3$ exists if there is an $[n,k,d]$ -linear code over $\mathbb F_{q}$ and an $[n,k,d]$ -linear Hermitian LCD code over $\mathbb F_{q^{2}}$ with $q>2$ exists if there is an $[n,k,d]$ -linear code over $\mathbb F_{q^{2}}$ . Hence, when $q>3$ (resp. $q>2$ ) $q$ -ary Euclidean (resp. $q^{2}$ -ary Hermitian) LCD codes possess the same asymptotical bound as $q$ -ary linear codes (resp. $q^{2}$ -ary linear codes). This gives a direct proof that every triple of parameters $[n,k,d]$ which is attainable by linear codes over $\mathbb F_{q}$ with $q>3$ (resp. over $\mathbb F_{q^{2}}$ with $q>2$ ) is attainable by Euclidean LCD codes (resp. by Hermitian LCD codes). In particular there exist families of $q$ -ary Euclidean LCD codes ( $q>3$ ) and $q^{2}$ -ary Hermitian LCD codes ( $q>2$ ) exceeding the asymptotical Gilbert–Varshamov bound. Further, we give a second proof of these results using the theory of Grobner bases. Finally, we present a new approach of constructing LCD codes by extending linear codes.

[1]  Cunsheng Ding,et al.  Parameters of two classes of LCD BCH codes , 2016, ArXiv.

[2]  Nicolas Sendrier,et al.  On the Dimension of the Hull , 1997, SIAM J. Discret. Math..

[3]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[4]  Jon-Lark Kim,et al.  Some bounds on binary LCD codes , 2017, Cryptography and Communications.

[5]  Alexander Vardy,et al.  Linearity and Complements in Projective Space , 2011, ArXiv.

[6]  Sihem Mesnager,et al.  Complementary Dual Algebraic Geometry Codes , 2016, IEEE Transactions on Information Theory.

[7]  C. Greene Weight Enumeration and the Geometry of Linear Codes , 1976 .

[8]  Juriaan Simonis,et al.  The effective length of subcodes , 1994, Applicable Algebra in Engineering, Communication and Computing.

[9]  Somphong Jitman,et al.  Complementary Dual Subfield Linear Codes Over Finite Fields , 2016, ArXiv.

[10]  Lingfei Jin Construction of MDS Codes With Complementary Duals , 2017, IEEE Transactions on Information Theory.

[11]  Patrick Solé,et al.  Structure and performance of generalized quasi-cyclic codes , 2017, Finite Fields Their Appl..

[12]  M. Esmaeili,et al.  On complementary-dual quasi-cyclic codes , 2009, Finite Fields Their Appl..

[13]  Cunsheng Ding,et al.  Two Families of LCD BCH Codes , 2016, IEEE Transactions on Information Theory.

[14]  Claude Carlet,et al.  Orthogonal Direct Sum Masking - A Smartcard Friendly Computation Paradigm in a Code, with Builtin Protection against Side-Channel and Fault Attacks , 2014, WISTP.

[15]  Mustafa Sari,et al.  On MDS Negacyclic LCD Codes , 2016, ArXiv.

[17]  Xiusheng Liu,et al.  Matrix-Product Complementary dual Codes , 2016, ArXiv.

[18]  Cunsheng Ding,et al.  LCD Cyclic Codes Over Finite Fields , 2017, IEEE Transactions on Information Theory.

[19]  Frédérique E. Oggier,et al.  On LCD codes and lattices , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[20]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[21]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[22]  Bocong Chen,et al.  New Constructions of MDS Codes With Complementary Duals , 2017, IEEE Transactions on Information Theory.

[23]  Chengju Li On Hermitian LCD codes from cyclic codes and their applications to orthogonal direct sum masking , 2017, ArXiv.

[24]  G. R. Pellikaan,et al.  Codes, arrangements and matroids , 2013 .

[25]  Carlos R. P. Hartmann,et al.  On the minimum distance of certain reversible cyclic codes (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[26]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[27]  P. Rosenstiehl,et al.  On the Principal Edge Tripartition of a Graph , 1978 .

[28]  Nicolas Sendrier,et al.  Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.

[29]  Shixin Zhu,et al.  Repeated-root constacyclic codes of length 3lps and their dual codes , 2016, Finite Fields Their Appl..

[30]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[31]  Nicolas Sendrier,et al.  Linear codes with complementary duals meet the Gilbert-Varshamov bound , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[32]  Jon-Lark Kim,et al.  The combinatorics of LCD codes: linear programming bound and orthogonal matrices , 2015, Int. J. Inf. Coding Theory.

[33]  W. W. Adams,et al.  An Introduction to Gröbner Bases , 2012 .

[34]  Xiang Yang,et al.  The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..

[35]  Tom Høholdt On (or in) the Blahut Footprint , 1998 .

[36]  Songsak Sriboonchitta,et al.  Constacyclic codes over finite commutative semi-simple rings , 2017, Finite Fields Their Appl..

[37]  Patrick Solé,et al.  Quasi-cyclic complementary dual codes , 2016, Finite Fields Their Appl..

[38]  Chaoping Xing,et al.  Algebraic Geometry Codes With Complementary Duals Exceed the Asymptotic Gilbert-Varshamov Bound , 2017, IEEE Transactions on Information Theory.

[39]  Florentin Smarandache,et al.  Erasure Techniques in MRD codes , 2012 .

[40]  Bernardo Gabriel Rodrigues,et al.  Linear codes with complementary duals from some strongly regular subgraphs of the McLaughlin graph , 2016 .

[41]  Chengju Li Hermitian LCD codes from cyclic codes , 2018, Des. Codes Cryptogr..

[42]  F. Jaeger Tutte polynomials and bicycle dimension of ternary matroids , 1989 .