Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection

We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude.

[1]  T. Ralph,et al.  Production of superpositions of coherent states in traveling optical fields with inefficient photon detection , 2004, quant-ph/0410022.

[2]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[3]  P. Grangier,et al.  Non-gaussian statistics from individual pulses of squeezed light , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[4]  T. Ralph,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2003, quant-ph/0401001.

[5]  T. Ralph,et al.  Transmission of optical coherent-state qubits , 2003, quant-ph/0311093.

[6]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[7]  Gerard J. Milburn,et al.  Quantum computation based on linear optics , 2002, SPIE/COS Photonics Asia.

[8]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[9]  J. Clausen,et al.  Lossy purification and detection of entangled coherent states , 2002, quant-ph/0203144.

[10]  B. Sanders,et al.  Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting , 2001, quant-ph/0110039.

[11]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[12]  Jinhyoung Lee,et al.  Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel , 2001, quant-ph/0104090.

[13]  S. V. Enk,et al.  Entangled coherent states: Teleportation and decoherence , 2000, quant-ph/0012086.

[14]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[15]  S. Lloyd,et al.  Quantum Computation over Continuous Variables , 1998, quant-ph/9810082.

[16]  G. J. Milburn,et al.  Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping , 1998, quant-ph/9809037.

[17]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[18]  D. Welsch,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1996, quant-ph/9612011.