Testing and application of a viscous passive damper for use in precision truss structures

A passive damping device intended to replace individual struts in precision truss structures for space applications is described. The theory of operation of the D-Strut device is detailed, and simple five- and three-parameter models are derived. Results from tests conducted to characterize the D-Strut at submicron displacement levels are reporeted. The incorporation of a strut in a precision truss testbed is described. Parameters determined from the component-level tests are used in a finite element model of the truss, and damping augmentation is predicted. Using the simple three-parameter model, a damper is selected for multiple placement in a separate optical interferometer truss testbed. The effect of the addition of the damper struts is illustrated analytically in a model of the structure. Finally, an improved Arched Flexure D-Strut that is expected to provide higher loss factors, and is currently under development, is described.