Multi-character population study of the vir subtelomeric multigene superfamily of Plasmodium vivax, a major human malaria parasite.

Plasmodium vivax, the most widely distributed human malaria parasite, contains the subtelomeric multigene vir superfamily corresponding to circa 10% of its coding genome. In this work, we used a multi-character strategy to study the vir gene repertoire circulating in natural parasite populations obtained directly from 32 human patients from endemic regions of Brazil and Sri Lanka. Cladistic analysis confirmed the existence of vir subfamilies, which varied in size and allele polymorphisms. Moreover, different motifs, protein domain, and secondary structures were predicted for each subfamily. Of importance, not all vir sequences possess a recognizable Pexel motif recently shown to be important, though not essential, signal for transportation to the cell membrane of infected red blood cells. Furthermore, subfamilies A and D display common structural features with the recently described P. falciparum SURFIN and Pfmc-2tm subtelomeric multigene families. These results suggest that VIR proteins can have different subcellular localizations and functions. This is the first study on a population level of the P. vivax vir subtelomeric multigene superfamily.

[1]  Q. Cheng,et al.  stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. , 1998, Molecular and biochemical parasitology.

[2]  Roger A. Sayle,et al.  DSC: public domain protein secondary structure predication , 1997, Comput. Appl. Biosci..

[3]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[4]  M. Barrett,et al.  Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. , 2004, Nucleic acids research.

[5]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[6]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[7]  O. Mercereau‐Puijalon,et al.  A large multigene family expressed during the erythrocytic schizogony of Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[8]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[9]  Bart Barrell,et al.  A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax , 2001, Nature.

[10]  M. Wahlgren,et al.  SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes , 2005, The Journal of experimental medicine.

[11]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[12]  John R Yates,et al.  A Plasmodium gene family encoding Maurer's cleft membrane proteins: structural properties and expression profiling. , 2004, Genome research.

[13]  B. Haas,et al.  The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease , 2005, Science.

[14]  Michael Lanzer,et al.  Variant genes and the spleen in Plasmodium vivax malaria. , 2004, International journal for parasitology.

[15]  C. Janse,et al.  Malaria parasites: genomes and molecular biology. , 2004 .

[16]  Burkhard Morgenstern,et al.  DIALIGN: finding local similarities by multiple sequence alignment , 1998, Bioinform..

[17]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[18]  Kamolrat Silamut,et al.  The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. , 2004, The Journal of infectious diseases.

[19]  J. Weber Interspersed repetitive DNA from Plasmodium falciparum. , 1988, Molecular and biochemical parasitology.

[20]  G J Barton,et al.  Application of multiple sequence alignment profiles to improve protein secondary structure prediction , 2000, Proteins.

[21]  K. Mendis,et al.  The neglected burden of Plasmodium vivax malaria. , 2001, The American journal of tropical medicine and hygiene.

[22]  G. Myers,et al.  The cytoadherence linked asexual gene family of Plasmodium falciparum: are there roles other than cytoadherence? , 1999, International journal for parasitology.

[23]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[24]  Michael Gribskov,et al.  Combining evidence using p-values: application to sequence homology searches , 1998, Bioinform..

[25]  H. D. del Portillo,et al.  Plasmodium falciparum: DBL-1 var sequence analysis in field isolates from central Brazil. , 2000, Experimental parasitology.

[26]  M. Gatton,et al.  Genetic diversity of the DBLalpha region in Plasmodium falciparum var genes among Asia-Pacific isolates. , 2002, Molecular and biochemical parasitology.

[27]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[28]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[29]  M. Barrett,et al.  A large gene family for putative variant antigens shared by human and rodent malaria parasites , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[31]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[32]  André Yoshiaki Kashiwabara,et al.  EGene: a configurable pipeline generation system for automated sequence analysis , 2005, Bioinform..

[33]  Melanie Rug,et al.  Targeting Malaria Virulence and Remodeling Proteins to the Host Erythrocyte , 2004, Science.

[34]  H. D. del Portillo,et al.  Variant proteins of Plasmodium vivax are not clonally expressed in natural infections , 2005, Molecular microbiology.

[35]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.