Enhanced electrochemical activity and stability of LSCF cathodes by Mo doping for intermediate temperature solid oxide fuel cells

[1]  S. Barnett,et al.  Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration , 2020, Journal of Materials Chemistry A.

[2]  Tak-Hyoung Lim,et al.  Facile surface modification of LSCF/GDC cathodes by epitaxial deposition of Sm0.5Sr0.5CoO3via ultrasonic spray infiltration , 2020 .

[3]  Yongliang Zhang,et al.  Densification of Ce0.9Gd0.1O2-δ interlayer to improve the stability of La0.6Sr0.4Co0.2Fe0.8 O3-δ/Ce0.9Gd0.1O2-δ interface and SOFC , 2020 .

[4]  Mingrui Wei,et al.  New insights into element migration on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of intermediate temperature solid oxide fuel cells , 2019, Solid State Ionics.

[5]  D. Morgan,et al.  Factors controlling surface oxygen exchange in oxides , 2019, Nature Communications.

[6]  Mingrui Wei,et al.  Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells , 2018, International Journal of Hydrogen Energy.

[7]  S. Jiang,et al.  Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells , 2018 .

[8]  Feroza Begum,et al.  Nanomaterials for solid oxide fuel cells: A review , 2018 .

[9]  Leilei Zhang,et al.  Performance of La0.5Sr0.5Fe0.9Mo0.1O3 − δ–Sm0.2Ce0.8O2 − δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells , 2018, Ionics.

[10]  T. He,et al.  Performance of double perovskite symmetrical electrode materials Sr 2 TiFe 1–x Mo x O 6–δ ( x = 0.1, 0.2) for solid oxide fuel cells , 2018 .

[11]  Pravin Kumar,et al.  Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC , 2017 .

[12]  L. Liotta,et al.  Infiltration, Overpotential and Ageing Effects on Cathodes for Solid Oxide Fuel Cells: La0.6Sr0.4Co0.2Fe0.8O3-δ versus Ba0.5Sr0.5Co0.8Fe0.2O3-δ , 2017 .

[13]  Jared W. Templeton,et al.  SrZrO3 Formation at the Interlayer/Electrolyte Interface during (La1-xSrx)1-δCo1-yFeyO3 Cathode Sintering , 2017 .

[14]  Kevin Huang,et al.  Ta-Doped SrCoO3−δ as a promising bifunctional oxygen electrode for reversible solid oxide fuel cells: a focused study on stability , 2017 .

[15]  San Ping Jiang,et al.  Prospects of Fuel Cell Technologies , 2017 .

[16]  M. Ni,et al.  BaCo0.7Fe0.22Y0.08O3−δ as an Active Oxygen Reduction Electrocatalyst for Low-Temperature Solid Oxide Fuel Cells below 600 °C , 2017 .

[17]  S. Jiang,et al.  Polarization-Induced Interface and Sr Segregation of in Situ Assembled La0.6Sr0.4Co0.2Fe0.8O3-δ Electrodes on Y2O3-ZrO2 Electrolyte of Solid Oxide Fuel Cells. , 2016, ACS applied materials & interfaces.

[18]  G. Tang,et al.  Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes , 2016 .

[19]  T. Ishihara,et al.  Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions , 2016 .

[20]  G. Guan,et al.  B-site Mo-doped perovskite Pr0.4Sr0.6 (Co0.2Fe0.8)1−xMoxO3−σ (x = 0, 0.05, 0.1 and 0.2) as electrode for symmetrical solid oxide fuel cell , 2015 .

[21]  S. Jiang,et al.  Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions , 2014 .

[22]  E. Ivers-Tiffée,et al.  Effect of Yttrium (Y) and Zirconium (Zr) Doping on the Thermodynamical Stability of the Cubic Ba0.5Sr0.5Co0.8Fe0.2O3-δ Phase , 2014 .

[23]  Seung Yoon Song,et al.  Structural, electrical and electrochemical characteristics of La0.1Sr0.9Co1−xNbxO3−δ as a cathode material for intermediate temperature solid oxide fuel cells , 2014 .

[24]  Andreas Heyden,et al.  Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells , 2012 .

[25]  S. Jiang,et al.  Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3−δ cathodes of solid oxide fuel cells , 2009 .

[26]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[27]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[28]  Yue Zhang,et al.  Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathode for solid oxide fuel cell , 2008 .

[29]  J. M. Serra,et al.  On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes , 2007 .

[30]  M. Engelhard,et al.  Degradation Mechanisms of La – Sr – Co – Fe – O3 SOFC Cathodes , 2006 .

[31]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[32]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[33]  P. Heide Systematic x‐ray photoelectron spectroscopic study of La1−xSrx‐based perovskite‐type oxides , 2002 .

[34]  San Ping Jiang,et al.  A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes , 2002 .

[35]  B. Steele,et al.  Material science and engineering: The enabling technology for the commercialisation of fuel cell systems , 2001 .

[36]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .