Some Historical Aspects of Nonlinear Dynamics: Possible Trends for the Future
暂无分享,去创建一个
[1] R. F. Williams,et al. Structural stability of Lorenz attractors , 1979 .
[2] Albert A. Bennett. The Iteration of Functions of one Variable , 1915 .
[3] Edward N. Lorenz,et al. Computational chaos-a prelude to computational instability , 1989 .
[4] Raymond A. Adomaitis,et al. Global Stability Analysis of an Adaptively-Controlled Mixing Tank Experiment , 1992, 1992 American Control Conference.
[5] Celso Grebogi,et al. Using small perturbations to control chaos , 1993, Nature.
[6] S. E. Khaikin,et al. Theory of Oscillators , 1966 .
[7] M. Hasler. Synchronization principles and applications , 1994 .
[8] Yoshisuke Ueda,et al. The road to chaos , 1992 .
[9] L. P. Shil'nikov,et al. Strange attractors and Dynamical Models , 1993, J. Circuits Syst. Comput..
[10] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[11] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[12] Grebogi,et al. Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.
[13] R. Thom. Stabilité structurelle et morphogenèse , 1974 .
[14] S. Newhouse,et al. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .
[15] P. Fatou,et al. Sur les équations fonctionnelles , 1920 .
[16] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[17] Philip Holmes,et al. Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences , 1985 .
[18] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[19] 林 千博. Selected papers on nonlinear oscillations , 1975 .
[20] S. Smale. Differentiable dynamical systems , 1967 .
[21] Laura Gardini,et al. Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .
[22] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[23] J. Yorke,et al. Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .
[24] Leon O. Chua,et al. TWO-PARAMETER STUDY OF TRANSITION TO CHAOS IN CHUA'S CIRCUIT: RENORMALIZATION GROUP, UNIVERSALITY AND SCALING , 1993 .
[25] B. Cessac,et al. Mean-field equations, bifurcation map and route to chaos in discrete time neural networks , 1994 .
[26] Leon O. Chua,et al. BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .
[27] Leon O. Chua,et al. Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.
[28] L. P. Šil'nikov. ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .
[29] H. G. E. Hentschel,et al. The infinite number of generalized dimensions of fractals and strange attractors , 1983 .
[30] Grebogi,et al. Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. , 1994, Physical review letters.
[31] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[32] Christian Mira. Some historical aspects of nonlinear dynamics—Possible trends for the future , 1997 .
[33] S. Lattès. Sur les formes réduites des transformations ponctuelles dans le domaine d'un point double , 1911 .
[34] Philip Holmes,et al. Bifurcations of one- and two-dimensional maps , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[35] Celso Grebogi,et al. Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..
[36] J. C. Cathala,et al. SINGULAR POINTS WITH TWO MULTIPLIERS, S1=−S2=1, IN THE BIFURCATION CURVES OF MAPS , 1992 .
[37] S. M. Ulam,et al. On Combination of Stochastic and Deterministic Processes , 1947 .
[38] S. V. Gonchenko,et al. ON GEOMETRICAL PROPERTIES OF TWO-DIMENSIONAL DIFFEOMORPHISMS WITH HOMOCLINIC TANGENCIES , 1995 .
[39] Dmitry Turaev,et al. On models with non-rough Poincare´ homoclinic curves , 1993 .
[40] Leon O. Chua,et al. Dry turbulence from a Time-delayed Chua's Circuit , 1993, J. Circuits Syst. Comput..
[41] Raymond A. Adomaitis,et al. The Structure of Basin Boundaries in a Simple Adaptive Control System , 1992 .
[42] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[43] Raymond A. Adomaitis,et al. Noninvertibility in neural networks , 1993, IEEE International Conference on Neural Networks.
[44] L. Shilnikov. CHUA’S CIRCUIT: RIGOROUS RESULTS AND FUTURE PROBLEMS , 1994 .
[45] Leon O. Chua,et al. Global unfolding of Chua's circuit , 1993 .
[46] Samuel Lattès,et al. Sur les équations fonctionnelles qui définissent une courbe ou une surface invariante par une transformation , 1907 .
[47] Yuri Maistrenko,et al. Noninvertible Two-Dimensional Maps Arising in Radiophysics , 1994 .
[48] Kolyada,et al. On ω-limit Sets of Triangular Maps , 1991 .
[49] Richard H. Day,et al. Statistical Dynamics and Economics , 1991 .
[50] Gaston Julia,et al. Mémoire sur la permutabilité des fractions rationnelles , 1922 .
[51] C. Hayashi,et al. Nonlinear oscillations in physical systems , 1987 .
[52] Farmer,et al. Predicting chaotic time series. , 1987, Physical review letters.
[53] Eckmann,et al. Liapunov exponents from time series. , 1986, Physical review. A, General physics.
[54] Nicholas C. Metropolis,et al. On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.
[55] Cars H. Hommes,et al. Cycles and chaos in a socialist economy , 1995 .
[56] J. Yorke,et al. Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.
[57] Yorke,et al. Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.
[58] S. Kolyada,et al. On dynamics of triangular maps of the square , 1992, Ergodic Theory and Dynamical Systems.
[59] P. Fatou. Substitutions analytiques et équations fonctionnelles à deux variables , 1924 .
[60] Christian Mira,et al. Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .
[61] Hiroshi Kawakami,et al. Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .
[62] Solomon Lefschetz,et al. Recent Soviet contributions to ordinary differential equations and nonlinear mechanics , 1961 .
[63] A. Liapounoff,et al. Problème général de la stabilité du mouvement , 1907 .
[64] Leon O. Chua,et al. Practical Numerical Algorithms for Chaotic Systems , 1989 .
[65] Angelo Raffaello Cigala. Sopra un criterio di instabilità , 1905 .
[66] P. Fatou,et al. Sur l'itération des fonctions transcendantes Entières , 1926 .
[67] Sergey P. Kuznetsov,et al. Variety of Types of Critical Behavior and Multistability in Period-Doubling Systems with Unidirectional Coupling Near the Onset of Chaos , 1993 .
[68] S. Smale,et al. Structurally Stable Systems are not Dense , 1966 .
[69] J. Yorke,et al. Chaotic behavior of multidimensional difference equations , 1979 .
[70] John Frederick William Herschel. XXII. Consideration of various points of analysis , 1814, Philosophical Transactions of the Royal Society of London.
[71] I. G. Malkin,et al. Some problems in the theory of nonlinear oscillations , 1959 .
[72] Jean-Pierre Carcasses. DETERMINATION OF DIFFERENT CONFIGURATIONS OF FOLD AND FLIP BIFURCATION CURVES OF A ONE OR TWO-DIMENSIONAL MAP , 1993 .
[73] L. Chua. The Genesis of Chua's circuit , 1992 .
[74] Laura Gardini,et al. A DOUBLE LOGISTIC MAP , 1994 .
[75] C. Mira,et al. THE DOVETAIL BIFURCATION STRUCTURE AND ITS QUALITATIVE CHANGES , 1993 .
[76] A. N. Sharkovsky,et al. IDEAL TURBULENCE: ATTRACTORS OF DETERMINISTIC SYSTEMS MAY LIE IN THE SPACE OF RANDOM FIELDS , 1992 .
[77] Danièle Fournier-Prunaret,et al. Comportement dynamique et erreur de prédiction dans un système de transmission micdif , 1995 .
[78] J. Hadamard,et al. Two works on iteration and related questions , 1944 .
[79] F. R. Marotto. Snap-back repellers imply chaos in Rn , 1978 .
[80] T. Levi-Civita. Sopra alcuni criteri di instabilità , 1901 .
[81] J. Guckenheimer,et al. The dynamics of density dependent population models , 1977, Journal of mathematical biology.
[82] R. M. May. LE CHAOS EN BIOLOGIE , 1991 .
[83] L. Chua,et al. NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .
[84] Raymond A. Adomaitis,et al. Noninvertibility and the structure of basins of attraction in a model adaptive control system , 1991 .
[85] J. Lawton,et al. Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.
[86] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .
[87] Leonid P Shilnikov,et al. ON SYSTEMS WITH A SADDLE-FOCUS HOMOCLINIC CURVE , 1987 .
[88] S. Newhouse,et al. Diffeomorphisms with infinitely many sinks , 1974 .
[89] George D. Birkhoff,et al. Structure Analysis of Surface Transformations , 2022 .
[90] S. Smale. Morse inequalities for a dynamical system , 1960 .