Some Historical Aspects of Nonlinear Dynamics: Possible Trends for the Future

This paper does not pretend to present a comprehensive history of nonlinear dynamics. Its purpose is more modest and limited to some historical aspects of this topic. The first part of this paper deals with the early foundations of nonlinear dynamics (essentially the Poincare and Lyapunov results). The succeeding sections cover the period 1910–1970 and describes the development and contributions of the theory, elaborated by Birkhoff, the Andronov school, and the Krylov–Bogoliubov school. After 1970, the development of new results in nonlinear dynamics has become "explosive". A part of these results is presented in a summarized form in this paper. The last section suggests some possible trends for future research.

[1]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[2]  Albert A. Bennett The Iteration of Functions of one Variable , 1915 .

[3]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[4]  Raymond A. Adomaitis,et al.  Global Stability Analysis of an Adaptively-Controlled Mixing Tank Experiment , 1992, 1992 American Control Conference.

[5]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[6]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[7]  M. Hasler Synchronization principles and applications , 1994 .

[8]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[9]  L. P. Shil'nikov,et al.  Strange attractors and Dynamical Models , 1993, J. Circuits Syst. Comput..

[10]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[13]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[14]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[15]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[16]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[17]  Philip Holmes,et al.  Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences , 1985 .

[18]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[19]  林 千博 Selected papers on nonlinear oscillations , 1975 .

[20]  S. Smale Differentiable dynamical systems , 1967 .

[21]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[22]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[23]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[24]  Leon O. Chua,et al.  TWO-PARAMETER STUDY OF TRANSITION TO CHAOS IN CHUA'S CIRCUIT: RENORMALIZATION GROUP, UNIVERSALITY AND SCALING , 1993 .

[25]  B. Cessac,et al.  Mean-field equations, bifurcation map and route to chaos in discrete time neural networks , 1994 .

[26]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[27]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[28]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[29]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[30]  Grebogi,et al.  Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. , 1994, Physical review letters.

[31]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[32]  Christian Mira Some historical aspects of nonlinear dynamics—Possible trends for the future , 1997 .

[33]  S. Lattès Sur les formes réduites des transformations ponctuelles dans le domaine d'un point double , 1911 .

[34]  Philip Holmes,et al.  Bifurcations of one- and two-dimensional maps , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[36]  J. C. Cathala,et al.  SINGULAR POINTS WITH TWO MULTIPLIERS, S1=−S2=1, IN THE BIFURCATION CURVES OF MAPS , 1992 .

[37]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[38]  S. V. Gonchenko,et al.  ON GEOMETRICAL PROPERTIES OF TWO-DIMENSIONAL DIFFEOMORPHISMS WITH HOMOCLINIC TANGENCIES , 1995 .

[39]  Dmitry Turaev,et al.  On models with non-rough Poincare´ homoclinic curves , 1993 .

[40]  Leon O. Chua,et al.  Dry turbulence from a Time-delayed Chua's Circuit , 1993, J. Circuits Syst. Comput..

[41]  Raymond A. Adomaitis,et al.  The Structure of Basin Boundaries in a Simple Adaptive Control System , 1992 .

[42]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[43]  Raymond A. Adomaitis,et al.  Noninvertibility in neural networks , 1993, IEEE International Conference on Neural Networks.

[44]  L. Shilnikov CHUA’S CIRCUIT: RIGOROUS RESULTS AND FUTURE PROBLEMS , 1994 .

[45]  Leon O. Chua,et al.  Global unfolding of Chua's circuit , 1993 .

[46]  Samuel Lattès,et al.  Sur les équations fonctionnelles qui définissent une courbe ou une surface invariante par une transformation , 1907 .

[47]  Yuri Maistrenko,et al.  Noninvertible Two-Dimensional Maps Arising in Radiophysics , 1994 .

[48]  Kolyada,et al.  On ω-limit Sets of Triangular Maps , 1991 .

[49]  Richard H. Day,et al.  Statistical Dynamics and Economics , 1991 .

[50]  Gaston Julia,et al.  Mémoire sur la permutabilité des fractions rationnelles , 1922 .

[51]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[52]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[53]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[54]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[55]  Cars H. Hommes,et al.  Cycles and chaos in a socialist economy , 1995 .

[56]  J. Yorke,et al.  Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.

[57]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[58]  S. Kolyada,et al.  On dynamics of triangular maps of the square , 1992, Ergodic Theory and Dynamical Systems.

[59]  P. Fatou Substitutions analytiques et équations fonctionnelles à deux variables , 1924 .

[60]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[61]  Hiroshi Kawakami,et al.  Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .

[62]  Solomon Lefschetz,et al.  Recent Soviet contributions to ordinary differential equations and nonlinear mechanics , 1961 .

[63]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[64]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[65]  Angelo Raffaello Cigala Sopra un criterio di instabilità , 1905 .

[66]  P. Fatou,et al.  Sur l'itération des fonctions transcendantes Entières , 1926 .

[67]  Sergey P. Kuznetsov,et al.  Variety of Types of Critical Behavior and Multistability in Period-Doubling Systems with Unidirectional Coupling Near the Onset of Chaos , 1993 .

[68]  S. Smale,et al.  Structurally Stable Systems are not Dense , 1966 .

[69]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[70]  John Frederick William Herschel XXII. Consideration of various points of analysis , 1814, Philosophical Transactions of the Royal Society of London.

[71]  I. G. Malkin,et al.  Some problems in the theory of nonlinear oscillations , 1959 .

[72]  Jean-Pierre Carcasses DETERMINATION OF DIFFERENT CONFIGURATIONS OF FOLD AND FLIP BIFURCATION CURVES OF A ONE OR TWO-DIMENSIONAL MAP , 1993 .

[73]  L. Chua The Genesis of Chua's circuit , 1992 .

[74]  Laura Gardini,et al.  A DOUBLE LOGISTIC MAP , 1994 .

[75]  C. Mira,et al.  THE DOVETAIL BIFURCATION STRUCTURE AND ITS QUALITATIVE CHANGES , 1993 .

[76]  A. N. Sharkovsky,et al.  IDEAL TURBULENCE: ATTRACTORS OF DETERMINISTIC SYSTEMS MAY LIE IN THE SPACE OF RANDOM FIELDS , 1992 .

[77]  Danièle Fournier-Prunaret,et al.  Comportement dynamique et erreur de prédiction dans un système de transmission micdif , 1995 .

[78]  J. Hadamard,et al.  Two works on iteration and related questions , 1944 .

[79]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[80]  T. Levi-Civita Sopra alcuni criteri di instabilità , 1901 .

[81]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[82]  R. M. May LE CHAOS EN BIOLOGIE , 1991 .

[83]  L. Chua,et al.  NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .

[84]  Raymond A. Adomaitis,et al.  Noninvertibility and the structure of basins of attraction in a model adaptive control system , 1991 .

[85]  J. Lawton,et al.  Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.

[86]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[87]  Leonid P Shilnikov,et al.  ON SYSTEMS WITH A SADDLE-FOCUS HOMOCLINIC CURVE , 1987 .

[88]  S. Newhouse,et al.  Diffeomorphisms with infinitely many sinks , 1974 .

[89]  George D. Birkhoff,et al.  Structure Analysis of Surface Transformations , 2022 .

[90]  S. Smale Morse inequalities for a dynamical system , 1960 .