Digital Twin: Values, Challenges and Enablers.

A digital twin can be defined as an adaptive model of a complex physical system. Recent advances in computational pipelines, multiphysics solvers, artificial intelligence, big data cybernetics, data processing and management tools bring the promise of digital twins and their impact on society closer to reality. Digital twinning is now an important and emerging trend in many applications. Also referred to as a computational megamodel, device shadow, mirrored system, avatar or a synchronized virtual prototype, there can be no doubt that a digital twin plays a transformative role not only in how we design and operate cyber-physical intelligent systems, but also in how we advance the modularity of multi-disciplinary systems to tackle fundamental barriers not addressed by the current, evolutionary modeling practices. In this work, we review the recent status of methodologies and techniques related to the construction of digital twins. Our aim is to provide a detailed coverage of the current challenges and enabling technologies along with recommendations and reflections for various stakeholders.

[1]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[2]  Shijin Wang,et al.  A deep autoencoder feature learning method for process pattern recognition , 2019, Journal of Process Control.

[3]  Wei Liu,et al.  Learning to Hash for Indexing Big Data—A Survey , 2015, Proceedings of the IEEE.

[4]  K. ITOy REDUCED BASIS METHOD FOR OPTIMAL CONTROL OF UNSTEADY VISCOUS FLOWS , 2006 .

[5]  Cristina H. Amon,et al.  An engineering design methodology with multistage Bayesian surrogates and optimal sampling , 1996 .

[6]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[7]  Galuh Boy Hertantyo,et al.  Applied Internet of Things (IoT): Car monitoring system using IBM BlueMix , 2016, 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA).

[8]  Justin Koo,et al.  A data-driven approach to model calibration for nonlinear dynamical systems , 2019, Journal of Applied Physics.

[9]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[10]  Yogendra Joshi,et al.  Reduced order thermal modeling of data centers via proper orthogonal decomposition: a review , 2010 .

[11]  Suresh Koduru,et al.  Smart Irrigation System Using Cloud and Internet of Things , 2019 .

[12]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[13]  Damodar Reddy Edla,et al.  Type 2 diabetes data classification using stacked autoencoders in deep neural networks , 2019, Clinical Epidemiology and Global Health.

[14]  Maire O'Neill,et al.  Insecurity by Design: Today's IoT Device Security Problem , 2016 .

[15]  Trond Kvamsdal,et al.  Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier-Stokes solver with the Spalart-Allmaras turbulence model , 2015 .

[16]  S. Hemchandra Premixed flame response to equivalence ratio fluctuations: Comparison between reduced order modeling and detailed computations , 2012 .

[17]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[18]  Dessislava Petrova-Antonova,et al.  EcoLogic: IoT Platform for Control of Carbon Emissions , 2017, ICSOFT.

[19]  Hui Jiang,et al.  Energy big data: A survey , 2016, IEEE Access.

[20]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[21]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[22]  Rolf Isermann,et al.  Hardware-in-the-loop simulation for the design and testing of engine-control systems , 1998 .

[23]  Jorge Bacca,et al.  Augmented Reality Trends in Education: A Systematic Review of Research and Applications , 2014, J. Educ. Technol. Soc..

[24]  N. Jones,et al.  Top 10 Strategic Technology Trends for 2019: A Gartner Trend Insight Report , 2018 .

[25]  Michael Kaufmann,et al.  Big Data Management Canvas: A Reference Model for Value Creation from Data , 2019, Big Data Cogn. Comput..

[26]  Carolyn Conner Seepersad,et al.  Building Surrogate Models Based on Detailed and Approximate Simulations , 2004, DAC 2004.

[27]  Rajkumar Buyya,et al.  iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments , 2016, Softw. Pract. Exp..

[28]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[29]  Xiaobing Feng,et al.  An Adjoint-Free CNOP–4DVar Hybrid Method for Identifying Sensitive Areas Targeted Observations: Method Formulation and Preliminary Evaluation , 2019, Advances in Atmospheric Sciences.

[30]  Rolf D. Reitz,et al.  Surrogate Model Development for Fuels for Advanced Combustion Engines , 2011 .

[31]  Paul Zikopoulos,et al.  Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data , 2011 .

[32]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[33]  Enrico Zio,et al.  A reinforcement learning framework for optimal operation and maintenance of power grids , 2019, Applied Energy.

[34]  Elaine S. Oran,et al.  The Computational Man: A Predictive Dynamic Model of Human Physiology , 2009 .

[35]  Michel Verhaegen,et al.  Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations , 2006 .

[36]  Zhengwei Li,et al.  A BIM-enabled information infrastructure for building energy Fault Detection and Diagnostics , 2014 .

[37]  Weisong Shi,et al.  The Promise of Edge Computing , 2016, Computer.

[38]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[39]  Hari S. Viswanathan,et al.  Predictive modeling of dynamic fracture growth in brittle materials with machine learning , 2018, Computational Materials Science.

[40]  Hamid Jahankhani,et al.  Health Care in the Cyberspace: Medical Cyber-Physical System and Digital Twin Challenges , 2019, Internet of Things.

[41]  Rolf Schuhmann,et al.  Model Order Reduction for Large Systems in Computational Electromagnetics , 2006 .

[42]  Rikard Söderberg,et al.  Toward a Digital Twin for real-time geometry assurance in individualized production , 2017 .

[43]  Yin-Jia Zhang,et al.  The potential for machine learning in hybrid QM/MM calculations. , 2018, The Journal of chemical physics.

[44]  Mumbai,et al.  Internet of Things (IoT): A Literature Review , 2015 .

[45]  Vibeke Skytt,et al.  Trivariate spline representations for computer aided design and additive manufacturing , 2018, Comput. Math. Appl..

[46]  Shane D. Ross,et al.  Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs) , 2018, Sensors.

[47]  Jonathan L. Wagner,et al.  Hybrid physics‐based and data‐driven modeling for bioprocess online simulation and optimization , 2019, Biotechnology and bioengineering.

[48]  Christian Igel,et al.  An Introduction to Restricted Boltzmann Machines , 2012, CIARP.

[49]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[50]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[51]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[52]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[53]  Piotr Breitkopf,et al.  Model reduction by CPOD and Kriging , 2010 .

[54]  Marcin Hewelt,et al.  Integrating IoT Devices into Business Processes , 2018, CAiSE Workshops.

[55]  Jinlong Wu,et al.  Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework , 2018, Physical Review Fluids.

[56]  C. O’Brien Statistical Learning with Sparsity: The Lasso and Generalizations , 2016 .

[57]  Mohamed Abdel-Basset,et al.  Internet of things in smart education environment: Supportive framework in the decision‐making process , 2019, Concurr. Comput. Pract. Exp..

[58]  Gianluca Percoco,et al.  Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry , 2019, Comput. Ind..

[59]  V. Isakov,et al.  TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .

[60]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[61]  Traian Iliescu,et al.  A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence , 2019, Physical review. E.

[62]  Juan Du,et al.  Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation , 2018, Computers & Fluids.

[63]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[64]  Athanasios V. Vasilakos,et al.  Machine learning on big data: Opportunities and challenges , 2017, Neurocomputing.

[65]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[66]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[67]  Seok-Pil Lee,et al.  Hand Gesture Recognition Using Clip Device Applicable to Smart Watch Based on Flexible Sensor , 2018, ELM.

[68]  Justin A. Sirignano,et al.  DGM: A deep learning algorithm for solving partial differential equations , 2017, J. Comput. Phys..

[69]  Akil C. Narayan,et al.  Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction , 2018, J. Comput. Phys..

[70]  Woo Jin Lee,et al.  Software-in-the-Loop simulation for early-stage testing of AUTOSAR software component , 2016, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN).

[71]  Alexander Verl,et al.  Real-time co-simulation for the virtual commissioning of production systems , 2019, Procedia CIRP.

[72]  Andrew Y. C. Nee,et al.  Digital twin-driven product design framework , 2019, Int. J. Prod. Res..

[73]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[74]  Sara Rankohi,et al.  Review and analysis of augmented reality literature for construction industry , 2013 .

[75]  Manuel Díaz,et al.  On blockchain and its integration with IoT. Challenges and opportunities , 2018, Future Gener. Comput. Syst..

[76]  Christopher C. Pain,et al.  A domain decomposition non-intrusive reduced order model for turbulent flows , 2019, Computers & Fluids.

[77]  P Kerfriden,et al.  A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. , 2012, Computer methods in applied mechanics and engineering.

[78]  Shiping Wang,et al.  Sparse autoencoder for social image understanding , 2019, Neurocomputing.

[79]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[80]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .

[81]  Laurent Cordier,et al.  Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[82]  Qian Wang,et al.  Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem , 2019, J. Comput. Phys..

[83]  Nancy Wilkins-Diehr,et al.  Community Organizations: Changing the Culture in Which Research Software Is Developed and Sustained , 2018, Computing in Science & Engineering.

[84]  Marc Priggemeyer,et al.  Experimentable Digital Twins—Streamlining Simulation-Based Systems Engineering for Industry 4.0 , 2018, IEEE Transactions on Industrial Informatics.

[85]  Wael Guibène,et al.  An evaluation of low power wide area network technologies for the Internet of Things , 2016, 2016 International Wireless Communications and Mobile Computing Conference (IWCMC).

[86]  Mohamad Kassem,et al.  Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases , 2019, Automation in Construction.

[87]  Tiago M. Fernández-Caramés,et al.  A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard , 2018, IEEE Access.

[88]  Hongchao Peng,et al.  Personalized adaptive learning: an emerging pedagogical approach enabled by a smart learning environment , 2019, Smart Learning Environments.

[89]  Nils Thürey,et al.  Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.

[90]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[91]  Qihui Wu,et al.  A survey of machine learning for big data processing , 2016, EURASIP Journal on Advances in Signal Processing.

[92]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[93]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence , 2014, Studies in Computational Intelligence.

[94]  Sung Wook Baik,et al.  Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments , 2019, Future Gener. Comput. Syst..

[95]  Kaishun Wu,et al.  WiG: WiFi-Based Gesture Recognition System , 2015, 2015 24th International Conference on Computer Communication and Networks (ICCCN).

[96]  Houshang Darabi,et al.  Multivariate LSTM-FCNs for Time Series Classification , 2018, Neural Networks.

[97]  Annette Stahl,et al.  Post-processing and visualization techniques for isogeometric analysis results , 2017 .

[98]  Addin Osman,et al.  A Benchmark Collection for Mapping Program Educational Objectives to ABET Student Outcomes: Accreditation , 2018 .

[99]  Jiliang Tang,et al.  Adversarial Attacks and Defenses in Images, Graphs and Text: A Review , 2019, International Journal of Automation and Computing.

[100]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[101]  Ji Wu,et al.  Study on a Poisson's equation solver based on deep learning technique , 2017, 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS).

[102]  M. G. Rodd Introducing Automation into Manufacturing - A Philosophy , 1987 .

[103]  Jan S. Hesthaven,et al.  Fast prediction and evaluation of gravitational waveforms using surrogate models , 2013, ArXiv.

[104]  Ayoub Ait Lahcen,et al.  Big Data technologies: A survey , 2017, J. King Saud Univ. Comput. Inf. Sci..

[105]  Mesud Hadzialic,et al.  Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues , 2018, Comput. Networks.

[106]  Dave Evans,et al.  How the Next Evolution of the Internet Is Changing Everything , 2011 .

[107]  Inseok Hwang,et al.  E-Gesture: a collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices , 2011, SenSys.

[108]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[109]  Rubén Alonso,et al.  SPHERE: BIM Digital Twin Platform , 2019, Proceedings.

[110]  Prem Kumar,et al.  Quantum Networks for Open Science (QNOS) Workshop , 2019 .

[111]  Thomas B. Sheridan,et al.  Adapting Automation to Man, Culture and Society , 1981 .

[112]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[113]  Peter Jan van Leeuwen,et al.  Nonlinear Data Assimilation , 2015 .

[114]  Luca Fumagalli,et al.  FMU-supported simulation for CPS Digital Twin , 2019, Procedia Manufacturing.

[115]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[116]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[117]  Truong Q. Nguyen,et al.  Correction by Projection: Denoising Images with Generative Adversarial Networks , 2018, ArXiv.

[118]  Jiguo Cao,et al.  Parameter Estimation of Partial Differential Equation Models , 2013, Journal of the American Statistical Association.

[119]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[120]  Yingjie Tian,et al.  A Comprehensive Survey of Clustering Algorithms , 2015, Annals of Data Science.

[121]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[122]  Ifeyinwa E. Achumba,et al.  Leveraging Fog Computing for Scalable IoT Datacenter Using Spine-Leaf Network Topology , 2017, J. Electr. Comput. Eng..

[123]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[124]  Demis Hassabis,et al.  Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , 2017, ArXiv.

[125]  James Murty,et al.  Programming Amazon web services - S3, EC2, SQS, FPS, and SimpleDB: outsource your infrastructure , 2008 .

[126]  Dongbin Xiu,et al.  Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization , 2018, PLoS Comput. Biol..

[127]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[128]  Francesco Massa Gray,et al.  A hybrid approach to thermal building modelling using a combination of Gaussian processes and grey-box models , 2018 .

[129]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[130]  Dirk Hartmann,et al.  Model Order Reduction a Key Technology for Digital Twins , 2018 .

[131]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[132]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[133]  Parth H. Pathak,et al.  Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges , 2015, IEEE Communications Surveys & Tutorials.

[134]  Heikki Laaki,et al.  Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of Remote Surgery , 2019, IEEE Access.

[135]  Peter J. Tonellato,et al.  Biomedical Cloud Computing With Amazon Web Services , 2011, PLoS Comput. Biol..

[136]  Jun Yang,et al.  Application of reinforcement learning in UAV cluster task scheduling , 2019, Future Gener. Comput. Syst..

[137]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[138]  Michael J. Harnisch,et al.  Industry 4 . 0 : The Future of Productivity and Growth in Manufacturing Industries April 09 , 2016 .

[139]  Xin Wang,et al.  A smart agriculture IoT system based on deep reinforcement learning , 2019, Future Gener. Comput. Syst..

[141]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[142]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[143]  Tao Zhang,et al.  Fog and IoT: An Overview of Research Opportunities , 2016, IEEE Internet of Things Journal.

[144]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[145]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[146]  Ivan Poupyrev,et al.  Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum , 2016, UIST.

[147]  Ionel M. Navon Data Assimilation for Numerical Weather Prediction: A Review , 2009 .

[148]  Latha Kant,et al.  A Generic Solution to Software-in-the-Loop , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[149]  Clara Draper,et al.  Challenges and Opportunities for Data Assimilation in Mountainous Environments , 2018 .

[150]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[151]  Sandeep K. Sood,et al.  Fog Assisted-IoT Enabled Patient Health Monitoring in Smart Homes , 2018, IEEE Internet of Things Journal.

[152]  Ying Chen,et al.  Visual tracking in high-dimensional particle filter , 2018, PloS one.

[153]  Jing Guo,et al.  Development and validation of observing‐system simulation experiments at NASA's Global Modeling and Assimilation Office , 2013 .

[154]  Atharv Bhosekar,et al.  Advances in surrogate based modeling, feasibility analysis, and optimization: A review , 2018, Comput. Chem. Eng..

[155]  Yana S. Mitrofanova,et al.  Modeling Smart Learning Processes Based on Educational Data Mining Tools , 2019, Smart Education and e-Learning 2019.

[156]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[157]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[158]  Jan S. Hesthaven,et al.  Non-intrusive reduced order modeling of nonlinear problems using neural networks , 2018, J. Comput. Phys..

[159]  Kazuomi Yamamoto,et al.  Efficient Optimization Design Method Using Kriging Model , 2005 .

[160]  Herman van der Auweraer,et al.  Digital Twins , 2020, SEMA SIMAI Springer Series.

[161]  Manuchehr Soleimani,et al.  Computational aspects of low frequency electrical and electromagnetic tomography: A review study , 2008 .

[162]  Mohammad Abdullah Al Faruque,et al.  Energy Management-as-a-Service Over Fog Computing Platform , 2015, IEEE Internet of Things Journal.

[163]  Christian Bauckhage,et al.  Informed Machine Learning - Towards a Taxonomy of Explicit Integration of Knowledge into Machine Learning , 2019, ArXiv.

[164]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[165]  Richard Sandberg,et al.  A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship , 2016, J. Comput. Phys..

[166]  Mihaela van der Schaar,et al.  GAIN: Missing Data Imputation using Generative Adversarial Nets , 2018, ICML.

[167]  Pierre Ladevèze,et al.  Proper Generalized Decomposition for Multiscale and Multiphysics Problems , 2010 .

[168]  P. Nair,et al.  Nonintrusive reduced‐order modeling of parametrized time‐dependent partial differential equations , 2013 .

[169]  Moshe Kam,et al.  Sensor Fusion for Mobile Robot Navigation , 1997, Proc. IEEE.

[170]  Dimitar Filev,et al.  Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning , 2019, Robotics Auton. Syst..

[171]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[172]  Ranveer Chandra,et al.  FarmBeats: An IoT Platform for Data-Driven Agriculture , 2017, NSDI.

[173]  Vladimir Buljak Inverse Analyses with Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics , 2011 .

[174]  Trond Kvamsdal,et al.  Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis , 2017 .

[175]  Vibeke Skytt,et al.  Locally refined spline surfaces for representation of terrain data , 2015, Comput. Graph..

[176]  Sergio A. Velastin,et al.  A Review of Computer Vision Techniques for the Analysis of Urban Traffic , 2011, IEEE Transactions on Intelligent Transportation Systems.

[177]  Donggang Yu,et al.  A Useful Visualization Technique: A Literature Review for Augmented Reality and its Application, limitation & future direction , 2009, VINCI.

[178]  Mohammad Abdullah Al Faruque,et al.  Energy Management-as-a-Service Over Fog Computing Platform , 2016, IEEE Internet Things J..

[179]  Youngjun Kim,et al.  Virtual Reality and Augmented Reality in Plastic Surgery: A Review , 2017, Archives of plastic surgery.

[180]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[181]  Prakash Vedula,et al.  Subgrid modelling for two-dimensional turbulence using neural networks , 2018, Journal of Fluid Mechanics.

[182]  Jacob K. White,et al.  Reduced-Order Models for Electromagnetic Scattering Problems , 2014, IEEE Transactions on Antennas and Propagation.

[183]  Ju Ren,et al.  BOAT: A Block-Streaming App Execution Scheme for Lightweight IoT Devices , 2018, IEEE Internet of Things Journal.

[184]  Partha Pratim Ray,et al.  A survey of IoT cloud platforms , 2016 .

[185]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  David Codony,et al.  From physical to digital in structural engineering classrooms using digital fabrication , 2017, Comput. Appl. Eng. Educ..

[187]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[188]  Ivan Poupyrev,et al.  Soli , 2016, ACM Trans. Graph..

[189]  Yang Xu,et al.  WiFinger: talk to your smart devices with finger-grained gesture , 2016, UbiComp.

[190]  M Boulakia,et al.  Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. , 2012, International journal for numerical methods in biomedical engineering.

[191]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[192]  Ian Roulstone,et al.  A comparison of 4DVar with ensemble data assimilation methods , 2014 .

[193]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[194]  A. Patera,et al.  ICASE Report No . 93-50 191510 IC S 2 O Years ofExcellence SURROGATES FOR NUMERICAL SIMULATIONS ; OPTIMIZATION OF EDDY-PROMOTER HEAT EXCHANGERS , 1993 .

[195]  Alain Galli,et al.  Filtering in Finance , 2003 .

[196]  Insup Lee,et al.  Challenges and Research Directions in Medical Cyber–Physical Systems , 2012, Proceedings of the IEEE.

[197]  M. Bacic,et al.  On hardware-in-the-loop simulation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[198]  Peter Palensky,et al.  Predictive Mitigation of Short Term Voltage Instability Using a Faster Than Real-Time Digital Replica , 2018, 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).

[199]  Daqiang Zhang,et al.  VCMIA: A Novel Architecture for Integrating Vehicular Cyber-Physical Systems and Mobile Cloud Computing , 2014, Mobile Networks and Applications.

[200]  Mohamad Bilal Ali,et al.  Collaborative Augmented Reality in Education: A Review , 2014, 2014 International Conference on Teaching and Learning in Computing and Engineering.

[201]  Phillip B. Chilson,et al.  Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System , 2012, Boundary-Layer Meteorology.

[202]  Eric P. James,et al.  Observation System Experiments with the Hourly-Updating Rapid Refresh (RAP) Model Using GSI Hybrid Ensemble/Variational Data Assimilation , 2017 .

[203]  Suling Jia,et al.  A Scalable Cloud for Internet of Things in Smart Cities , 2015 .

[204]  Sr. Principal Analyst IoT platforms : enabling the Internet of Things , 2016 .

[205]  Frank Vahid,et al.  A Survey on Concepts, Applications, and Challenges in Cyber-Physical Systems , 2014, KSII Trans. Internet Inf. Syst..

[206]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[207]  Pyeong-Gook Jung,et al.  A Wearable Gesture Recognition Device for Detecting Muscular Activities Based on Air-Pressure Sensors , 2015, IEEE Transactions on Industrial Informatics.

[208]  B. Uberuaga,et al.  Physics-informed machine learning for inorganic scintillator discovery. , 2018, The Journal of chemical physics.

[209]  Pan He,et al.  Adversarial Examples: Attacks and Defenses for Deep Learning , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[210]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[211]  Dilpreet Singh,et al.  A survey on platforms for big data analytics , 2014, Journal of Big Data.

[212]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[213]  Dario Assante,et al.  Smart Education in the context of Industry 4.0 , 2019, 2019 IEEE Global Engineering Education Conference (EDUCON).

[214]  Seref Sagiroglu,et al.  Big data: A review , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[215]  Mehmet K. Aktas,et al.  Emerging Security Mechanisms for Medical Cyber Physical Systems , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[216]  M. Purrer Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014, 1402.4146.

[217]  Iulian Radu,et al.  Augmented reality in education: a meta-review and cross-media analysis , 2014, Personal and Ubiquitous Computing.

[218]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[219]  Hyuk Lee,et al.  Neural algorithm for solving differential equations , 1990 .

[220]  Daniela Giorgi,et al.  Towards a topological–geometrical theory of group equivariant non-expansive operators for data analysis and machine learning , 2018, Nat. Mach. Intell..

[221]  Andrew J. Majda,et al.  Strategies for Model Reduction: Comparing Different Optimal Bases , 2004 .

[222]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[223]  Ray Y. Zhong,et al.  Intelligent Manufacturing in the Context of Industry 4.0: A Review , 2017 .

[224]  Radha Poovendran,et al.  Aviation Cyber–Physical Systems: Foundations for Future Aircraft and Air Transport , 2013, Proceedings of the IEEE.

[225]  Trond Kvamsdal,et al.  Simple a posteriori error estimators in adaptive isogeometric analysis , 2015, Comput. Math. Appl..

[226]  Victor Isakov THE INVERSE PROBLEM OF OPTION PRICING , 2003 .

[227]  Peer Kröger,et al.  On event-driven knowledge graph completion in digital factories , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[228]  Ashish Jasuja,et al.  Air quality monitoring system based on IoT using Raspberry Pi , 2017, 2017 International Conference on Computing, Communication and Automation (ICCCA).

[229]  Michelle Girvan,et al.  Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model , 2018, Chaos.

[230]  D. Chalikov,et al.  New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model , 2005 .

[231]  Ninghui Li,et al.  The description-experience gap in the effect of warning reliability on user trust and performance in a phishing-detection context , 2018, Int. J. Hum. Comput. Stud..

[232]  S. M. Rahman,et al.  A Hybrid Approach for Model Order Reduction of Barotropic Quasi-Geostrophic Turbulence , 2018, Fluids.

[233]  Desney S. Tan,et al.  SoundWave: using the doppler effect to sense gestures , 2012, CHI.

[234]  Chunyan Miao,et al.  Towards AI-powered personalization in MOOC learning , 2017, npj Science of Learning.

[235]  Joe Wiart,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..

[236]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[237]  R. Todling,et al.  Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis , 2000 .

[238]  M. Schijven,et al.  Systematic review on the effectiveness of augmented reality applications in medical training , 2016, Surgical Endoscopy.

[239]  Ionel M. Navon,et al.  Efficiency of a POD-based reduced second-order adjoint model in 4 D-Var data assimilation , 2006 .

[240]  Danh Le Phuoc,et al.  Enabling IoT Ecosystems through Platform Interoperability , 2017, IEEE Software.

[241]  Benjamin Peherstorfer,et al.  Feedback Control for Systems with Uncertain Parameters Using Online-Adaptive Reduced Models , 2017, SIAM J. Appl. Dyn. Syst..

[242]  M. Frank,et al.  Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. , 2006, Psychological review.

[243]  Ajmal Mian,et al.  Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey , 2018, IEEE Access.

[244]  Ian T. Jolliffe,et al.  Empirical orthogonal functions and related techniques in atmospheric science: A review , 2007 .

[245]  Ingrid Moerman,et al.  A survey on wireless body area networks , 2011, Wirel. Networks.

[246]  Maurice Dawson,et al.  UNDERSTANDING THE NEED AND IMPORTANCE OF THE CLOUD COMPUTING ENVIRONMENT WITHIN THE NATIONAL INSTITUTE OF FOOD AND AGRICULTURE, AN AGENCY OF THE UNITED STATES DEPARTMENT OF AGRICULTURE , 2011 .

[247]  Rajkumar Buyya,et al.  Fog Computing: Helping the Internet of Things Realize Its Potential , 2016, Computer.

[248]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[249]  Alaa El. Sagheer,et al.  Time series forecasting of petroleum production using deep LSTM recurrent networks , 2019, Neurocomputing.

[250]  Mahmoud Ammar,et al.  Journal of Information Security and Applications , 2022 .

[251]  Christoph Ludwig,et al.  DIGITAL TWINS FOR LARGE ELECTRIC DRIVE TRAINS , 2018, 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe).

[252]  Petros Koumoutsakos,et al.  Data-assisted reduced-order modeling of extreme events in complex dynamical systems , 2018, PloS one.

[253]  Anthony T. Patera,et al.  A component-based hybrid reduced basis/finite element method for solid mechanics with local nonlinearities , 2018 .

[254]  Xia Zhou,et al.  Self-Powered Gesture Recognition with Ambient Light , 2018, UIST.

[255]  Andrzej Skowron,et al.  Interactive granular computing , 2016 .

[256]  Chin-Chen Chang,et al.  Blockchain based searchable encryption for electronic health record sharing , 2019, Future Gener. Comput. Syst..

[257]  Stefan Forsström,et al.  A performance and cost evaluation of combining OPC-UA and Microsoft Azure IoT Hub into an industrial Internet-of-Things system , 2017, 2017 Global Internet of Things Summit (GIoTS).

[258]  P. de Rosnay,et al.  Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey , 2018, Geosciences.

[259]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[260]  Donna R Berryman,et al.  Augmented Reality: A Review , 2012, Medical reference services quarterly.

[261]  Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) , 2013 .

[262]  Slawomir Koziel,et al.  Surrogate-Based Modeling and Optimization , 2013 .

[263]  Houxiang Zhang,et al.  A Language and Platform Independent Co-Simulation Framework Based on the Functional Mock-Up Interface , 2019, IEEE Access.

[264]  Christophe Hurter,et al.  Tangible augmented reality for air traffic control , 2014, INTR.

[265]  Tom White,et al.  Hadoop: The Definitive Guide , 2009 .

[266]  Andrew J. Majda,et al.  Low-Order Stochastic Mode Reduction for a Realistic Barotropic Model Climate , 2005 .

[267]  Sajad Saeedi,et al.  AUV Navigation and Localization: A Review , 2014, IEEE Journal of Oceanic Engineering.

[268]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[269]  Pierre Sens,et al.  DeepMoD: Deep learning for model discovery in noisy data , 2019, J. Comput. Phys..

[270]  Mohd Abdul Hameed,et al.  Mining Twitter using cloud computing , 2011, 2011 World Congress on Information and Communication Technologies.

[271]  Sabit Ekin,et al.  RSSI-Based Localization Using LoRaWAN Technology , 2019, IEEE Access.

[272]  Colin Price,et al.  Using smartphones for monitoring atmospheric tides , 2018, Journal of Atmospheric and Solar-Terrestrial Physics.

[273]  Yunhao Liu,et al.  Big Data: A Survey , 2014, Mob. Networks Appl..

[274]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[275]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[276]  J. Geoffrey Chase,et al.  Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design , 2008 .

[277]  R. DarshanK,et al.  A comprehensive review on usage of Internet of Things (IoT) in healthcare system , 2015 .

[278]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[279]  Nilanjan Dey,et al.  Medical cyber-physical systems: A survey , 2018, Journal of Medical Systems.

[280]  Hong Wang,et al.  POD/DEIM Reduced-Order Modeling of Time-Fractional Partial Differential Equations with Applications in Parameter Identification , 2016, J. Sci. Comput..

[281]  Yuan He,et al.  From Surveillance to Digital Twin: Challenges and Recent Advances of Signal Processing for Industrial Internet of Things , 2018, IEEE Signal Processing Magazine.

[282]  Santiago Grijalva,et al.  A Review of Reinforcement Learning for Autonomous Building Energy Management , 2019, Comput. Electr. Eng..

[283]  Ján Vachálek,et al.  The digital twin of an industrial production line within the industry 4.0 concept , 2017, 2017 21st International Conference on Process Control (PC).

[284]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[285]  M. Salman Siddiqui,et al.  Finite-Volume High-Fidelity Simulation Combined with Finite-Element-Based Reduced-Order Modeling of Incompressible Flow Problems , 2019, Energies.

[286]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[287]  Nikki C. Privé,et al.  Validation of the forecast skill of the Global Modeling and Assimilation Office Observing System Simulation Experiment , 2013 .

[288]  Ozgur Kisi,et al.  Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review , 2014 .

[289]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[290]  Robin R. Murphy,et al.  Hand gesture recognition with depth images: A review , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[291]  Vladimir M. Krasnopolsky,et al.  A new synergetic paradigm in environmental numerical modeling: Hybrid models combining deterministic and machine learning components , 2006 .

[292]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[293]  John A. Detre,et al.  Machine learning in cardiovascular flows modeling: Predicting pulse wave propagation from non-invasive clinical measurements using physics-informed deep learning , 2019, Computer Methods in Applied Mechanics and Engineering.

[294]  Meritxell Vinyals,et al.  District Energy Systems: A Collaborative Exchange of Results on Planning, Operation and Modelling for Energy Efficiency , 2018, Proceedings.

[295]  G. Morken,et al.  Actigraphy as an objective intra-individual marker of activity patterns in acute-phase bipolar disorder: a case series , 2018, International Journal of Bipolar Disorders.

[296]  N. B. Anuar,et al.  The rise of "big data" on cloud computing: Review and open research issues , 2015, Inf. Syst..

[297]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[298]  Andreas Junghanns,et al.  The Functional Mockup Interface for Tool independent Exchange of Simulation Models , 2011 .

[299]  J. Hesthaven,et al.  Greedy Nonintrusive Reduced Order Model for Fluid Dynamics , 2018, AIAA Journal.

[300]  Rathnakar Achary,et al.  Internet of Things: Essential Technology, Application Domain, Privacy and Security Challenges , 2017 .

[301]  Francisco Chinesta,et al.  Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data , 2018, Archives of Computational Methods in Engineering.

[302]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[303]  He Zhang,et al.  Digital Twin in Industry: State-of-the-Art , 2019, IEEE Transactions on Industrial Informatics.

[304]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[305]  Neda Mohammadi,et al.  Smart city digital twins , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[306]  K. B. Letaief,et al.  A Survey on Mobile Edge Computing: The Communication Perspective , 2017, IEEE Communications Surveys & Tutorials.

[307]  John O. Dabiri,et al.  Wind Farm Modeling with Interpretable Physics-Informed Machine Learning , 2019, Energies.

[308]  Y. Marzouk,et al.  Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .

[309]  Vladimir M. Krasnopolsky,et al.  Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction , 2006, Neural Networks.

[310]  Sung-Bae Cho,et al.  Predicting residential energy consumption using CNN-LSTM neural networks , 2019, Energy.

[311]  A. Meola,et al.  Augmented reality in neurosurgery: a systematic review , 2017, Neurosurgical Review.

[312]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[313]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[314]  Jameela Al-Jaroodi,et al.  Leveraging the Capabilities of Industry 4.0 for Improving Energy Efficiency in Smart Factories , 2019, IEEE Access.

[315]  Domenico Baù,et al.  Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation , 2012 .

[316]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[317]  Robert Atlas,et al.  Future Observing System Simulation Experiments , 2016 .

[318]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[319]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[320]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[321]  Wei-keng Liao,et al.  ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition , 2018, Scientific Reports.

[322]  R. H. Myers Classical and modern regression with applications , 1986 .

[323]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[324]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[325]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[326]  Ian R. Petersen,et al.  Robust filtering, prediction, smoothing and observability of uncertain systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[327]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[328]  C. Pain,et al.  Non‐intrusive reduced‐order modelling of the Navier–Stokes equations based on RBF interpolation , 2015 .

[329]  Yong Wang,et al.  An Architecture for Interoperable IoT Ecosystems , 2016, InterOSS@IoT.

[330]  Rainer Krebs,et al.  Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers , 2018, 2018 IEEE International Energy Conference (ENERGYCON).

[331]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[332]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[333]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[334]  Wook Hyun Kwon,et al.  Real-time distributed software-in-the-loop simulation for distributed control systems , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[335]  Jihie Kim,et al.  Ensemble-Based Deep Reinforcement Learning for Chatbots , 2019, Neurocomputing.

[336]  H. Zemanek,et al.  Man's role in man-machine systems , 1982, Autom..

[337]  Paul Fearnhead,et al.  Particle Filters and Data Assimilation , 2017, 1709.04196.

[338]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[339]  Ali Balador,et al.  Industrial IoT security threats and concerns by considering Cisco and Microsoft IoT reference models , 2018, 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[340]  Themistoklis P. Sapsis,et al.  Extreme events and their optimal mitigation in nonlinear structural systems excited by stochastic loads: Application to ocean engineering systems , 2017, ArXiv.

[341]  K. M. Okstad,et al.  Numerical benchmarking of fluid–structure interaction: An isogeometric finite element approach , 2016 .

[342]  K. Anandakumar,et al.  A comprehensive review on usage of Internet of Things (IoT) in healthcare system , 2015, 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT).

[343]  Jinlong Wu,et al.  Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data , 2016, 1606.07987.

[344]  Nagiza F. Samatova,et al.  Theory-Guided Data Science for Climate Change , 2014, Computer.

[345]  Wouter Joosen,et al.  Extending sensor networks into the Cloud using Amazon Web Services , 2010, 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications.

[346]  N. Navab,et al.  Advanced Medical Displays: A Literature Review of Augmented Reality , 2008, Journal of Display Technology.

[347]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[348]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[349]  Lorenzo Rosasco,et al.  Elastic-net regularization in learning theory , 2008, J. Complex..

[350]  Joerg Swetina,et al.  Toward a standardized common M2M service layer platform: Introduction to oneM2M , 2014, IEEE Wireless Communications.

[351]  Adil Rasheed,et al.  Discovering Thermoelectric Materials Using Machine Learning: Insights and Challenges , 2018, ICANN.

[352]  Hui Yu,et al.  Gesture recognition based on binocular vision , 2018, Cluster Computing.

[353]  Cheolwoo You,et al.  Millimeter wave beamforming receivers using a Si-based OBFN for 5G wireless communication systems , 2019 .

[354]  Jack J. Dongarra,et al.  Exascale computing and big data , 2015, Commun. ACM.

[355]  Sandip Das,et al.  Application of IoT in detecting health risks due to flickering artificial lights , 2015, 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[356]  Dionisis Margaris,et al.  Exploiting Internet of Things information to enhance venues’ recommendation accuracy , 2017, Service Oriented Computing and Applications.

[357]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[358]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[359]  Thomas B. Sheridan,et al.  Function allocation: algorithm, alchemy or apostasy? , 2000, Int. J. Hum. Comput. Stud..

[360]  S. Michael Spottswood,et al.  A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures , 2013 .

[361]  Shi-Jinn Horng,et al.  Dynamic variable precision rough set approach for probabilistic set-valued information systems , 2017, Knowl. Based Syst..

[362]  Charbel Farhat,et al.  Probabilistic learning for modeling and quantifying model‐form uncertainties in nonlinear computational mechanics , 2018, International Journal for Numerical Methods in Engineering.

[363]  Steven L. Brunton,et al.  Sparse reduced-order modelling: sensor-based dynamics to full-state estimation , 2017, Journal of Fluid Mechanics.

[364]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[365]  Francine Berman,et al.  Realizing the potential of data science , 2018, Commun. ACM.

[366]  Takemasa Miyoshi,et al.  Recent Progress of Data Assimilation Methods in Meteorology(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[367]  Francisco Chinesta,et al.  Hybrid constitutive modeling: data-driven learning of corrections to plasticity models , 2018, International Journal of Material Forming.

[368]  Sachchidanand Singh,et al.  Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce , 2015, 2015 International Conference on Green Computing and Internet of Things (ICGCIoT).

[369]  Trond Kvamsdal,et al.  Fast divergence-conforming reduced basis methods for steady Navier–Stokes flow , 2018, Computer Methods in Applied Mechanics and Engineering.

[370]  Sarmistha Neogy,et al.  Analytical Survey on Standards of Internet of Things Framework and Platforms , 2019 .

[371]  Muhammad Shahzad,et al.  Gesture Recognition Using Ambient Light , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[372]  Cees J. H. Midden,et al.  The effects of errors on system trust, self-confidence, and the allocation of control in route planning , 2003, Int. J. Hum. Comput. Stud..

[373]  A. Simone,et al.  POD-DEIM model order reduction for strain softening viscoplasticity , 2017 .

[374]  Ulrich Maas,et al.  Model Reduction for Combustion Chemistry , 2011 .

[375]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[376]  A. Rasheed,et al.  Implementation and comparison of three isogeometric Navier–Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number , 2015 .

[377]  Frank M. Selten,et al.  An Efficient Description of the Dynamics of Barotropic Flow , 1995 .

[378]  Wei Wang,et al.  Device-free gesture tracking using acoustic signals , 2016, MobiCom.

[379]  Curt Wells The Kalman Filter in Finance , 1995 .

[380]  Themistoklis P. Sapsis,et al.  Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model , 2014, 1401.3397.

[381]  Beng Chin Ooi,et al.  In-Memory Big Data Management and Processing: A Survey , 2015, IEEE Transactions on Knowledge and Data Engineering.

[382]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[383]  M. Cenk Gursoy,et al.  Downlink Analysis in Unmanned Aerial Vehicle (UAV) Assisted Cellular Networks With Clustered Users , 2018, IEEE Access.

[384]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[385]  Anuj Karpatne,et al.  Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles , 2018, SDM.

[386]  Sourav Mazumder Big Data Tools and Platforms , 2016 .

[387]  Benjamin Peherstorfer,et al.  Projection-based model reduction: Formulations for physics-based machine learning , 2019, Computers & Fluids.

[388]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[389]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[390]  A. Holtslag,et al.  Urban fine-scale forecasting reveals weather conditions with unprecedented detail , 2017 .

[391]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[392]  Robert Kohn,et al.  FILTERING AND SMOOTHING IN STATE SPACE MODELS WITH PARTIALLY DIFFUSE INITIAL CONDITIONS , 1990 .

[393]  Hisashi Tanizaki,et al.  Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration , 1994 .

[394]  Trond Kvamsdal,et al.  A Step Towards a Reduced Order Modelling of Flow Characterized by Wakes Using Proper Orthogonal Decomposition , 2017 .

[395]  J. M. Lewis,et al.  Forecast Error Correction using Dynamic Data Assimilation , 2016 .

[396]  Sherali Zeadally,et al.  Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities , 2018, Future Gener. Comput. Syst..

[397]  Harpreet S. Dhillon,et al.  Downlink Coverage Analysis for a Finite 3-D Wireless Network of Unmanned Aerial Vehicles , 2017, IEEE Transactions on Communications.

[398]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[399]  Xinghuo Yu,et al.  Smart Grids: A Cyber–Physical Systems Perspective , 2016, Proceedings of the IEEE.

[400]  Haidong Shao,et al.  A novel deep autoencoder feature learning method for rotating machinery fault diagnosis , 2017 .

[401]  Aditya Konduri,et al.  Asynchronous finite-difference schemes for partial differential equations , 2014, J. Comput. Phys..

[402]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[403]  Anuradha Manchar,et al.  Salesforce CRM: A new way of managing customer relationship in cloud environment , 2017, 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT).

[404]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[405]  John Shalf,et al.  The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..

[406]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[407]  Andrew M. Stuart,et al.  Evaluating Data Assimilation Algorithms , 2011, ArXiv.

[408]  A. M. Kalteh,et al.  Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application , 2008, Environ. Model. Softw..

[409]  Stefan Klus,et al.  Koopman operator-based model reduction for switched-system control of PDEs , 2017, Autom..

[410]  Chung-Horng Lung,et al.  Smart Home: Integrating Internet of Things with Web Services and Cloud Computing , 2013, 2013 IEEE 5th International Conference on Cloud Computing Technology and Science.

[411]  Janet Light,et al.  Healthcare event aggregation lab (HEAL), a knowledge sharing platform for anomaly detection and prediction , 2015, 2015 17th International Conference on E-health Networking, Application & Services (HealthCom).

[412]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[413]  Soumik Sarkar,et al.  LLNet: A deep autoencoder approach to natural low-light image enhancement , 2015, Pattern Recognit..

[414]  Sankaran Mahadevan,et al.  Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin , 2017 .

[415]  W. Tao,et al.  A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems , 2008 .

[416]  Witold Pedrycz,et al.  An overview on the roles of fuzzy set techniques in big data processing: Trends, challenges and opportunities , 2017, Knowl. Based Syst..

[417]  Taghi M. Khoshgoftaar,et al.  A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.

[418]  Hongfang Lu,et al.  Oil and Gas 4.0 era: A systematic review and outlook , 2019, Comput. Ind..

[419]  Raouf Boutaba,et al.  Cloud computing: state-of-the-art and research challenges , 2010, Journal of Internet Services and Applications.

[420]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[421]  Wei Cheng,et al.  A review of using Augmented Reality in Education from 2011 to 2016 , 2017 .

[422]  George Pallis,et al.  Cloud Computing: The New Frontier of Internet Computing , 2010, IEEE Internet Computing.

[423]  John D. Leidel,et al.  Extreme Heterogeneity 2018 - Productive Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity , 2018 .

[424]  Da Ruan,et al.  Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems , 2012, Int. J. Approx. Reason..

[425]  Henry Been-Lirn Duh,et al.  Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[426]  J. Duan MAXIMUM LIKELIHOOD ESTIMATION USING PRICE DATA OF THE DERIVATIVE CONTRACT , 1994 .

[427]  Laurence T. Yang,et al.  A survey on deep learning for big data , 2018, Inf. Fusion.

[428]  Michael D. Harrison,et al.  Allocation of function: scenarios, context and the economics of effort , 2000, Int. J. Hum. Comput. Stud..

[429]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[430]  K. Willcox,et al.  Data-driven operator inference for nonintrusive projection-based model reduction , 2016 .

[431]  Thomas Watteyne,et al.  Understanding the Limits of LoRaWAN , 2016, IEEE Communications Magazine.

[432]  P. Breitkopf,et al.  A reduced multiscale model for nonlinear structural topology optimization , 2014 .

[433]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[434]  Fei Tao,et al.  Digital twin-driven product design, manufacturing and service with big data , 2017, The International Journal of Advanced Manufacturing Technology.

[435]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[436]  Jay Lee,et al.  A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems , 2015 .

[437]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[438]  Louis J. Durlofsky,et al.  Use of Reduced-order Models for Improved Data Assimilation within an EnKF Context , 2011, ANSS 2011.

[439]  Harald Martens,et al.  Quantitative Big Data: where chemometrics can contribute , 2015 .

[440]  Charbel Farhat,et al.  A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models , 2017 .

[441]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[442]  Eric W. Frew,et al.  Evaluation of Unmanned Aircraft Systems for Severe Storm Sampling Using Hardware-in-the-Loop Simulations , 2011, J. Aerosp. Comput. Inf. Commun..

[443]  André Thomas,et al.  Digital transformation of manufacturing through cloud services and resource virtualization , 2019, Comput. Ind..

[444]  R. Happee,et al.  A human factors perspective on automated driving , 2017 .

[445]  Zhiyi LI,et al.  Cyber-secure decentralized energy management for IoT-enabled active distribution networks , 2018, Journal of Modern Power Systems and Clean Energy.

[446]  D. Easterling,et al.  Observed variability and trends in extreme climate events: A brief review , 2000 .

[447]  Uwe Handmann,et al.  Hand Gesture Recognition in Automotive Human–Machine Interaction Using Depth Cameras , 2018, Sensors.

[448]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[449]  Anthony J. Jakeman,et al.  A review of surrogate models and their application to groundwater modeling , 2015 .

[450]  Cédric Leblond,et al.  Optimal flow control using a POD-based reduced-order model , 2016 .

[451]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[452]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[453]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[454]  Lei Hou,et al.  Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems , 2019, Mechanical Systems and Signal Processing.

[455]  Dimitris G. Papageorgiou,et al.  Neural-network methods for boundary value problems with irregular boundaries , 2000, IEEE Trans. Neural Networks Learn. Syst..

[456]  Karl Henrik Johansson,et al.  Cyber-Physical Control of Road Freight Transport , 2016, Proc. IEEE.

[457]  Ken Perlin,et al.  Accelerating Eulerian Fluid Simulation With Convolutional Networks , 2016, ICML.

[458]  Andrew Whitaker Einstein, Bohr and the quantum dilemma : from quantum theory to quantum information , 2006 .

[459]  Neill E. Bowler,et al.  Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NWP , 2015 .

[460]  Hayley Stephenson,et al.  Accelerated Completion Optimization with Uncertainty Reduction Through Coupled Data and Physics Based Hybrid Models , 2019 .

[461]  James M. Rondinelli,et al.  Theory-Guided Machine Learning in Materials Science , 2016, Front. Mater..

[462]  Bhiksha Raj,et al.  One-handed gesture recognition using ultrasonic Doppler sonar , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[463]  Arnulf Jentzen,et al.  Solving high-dimensional partial differential equations using deep learning , 2017, Proceedings of the National Academy of Sciences.

[464]  Ciprian Dobre,et al.  Big Data and Cloud Computing: A Survey of the State-of-the-Art and Research Challenges , 2017 .

[465]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[466]  Svetlozar T. Rachev,et al.  Bayesian methods in finance , 2008 .

[467]  D. Waldman,et al.  U.S. Economic Sensitivity to Weather Variability , 2011 .

[468]  Milica Radisic,et al.  Advances in organ-on-a-chip engineering , 2018, Nature Reviews Materials.

[469]  Jeroen van den Hoven,et al.  Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm , 2018, Front. Genet..

[470]  Wenyuan Liu,et al.  Toward Device-Free Micro-Gesture Tracking via Accurate Acoustic Doppler-Shift Detection , 2019, IEEE Access.

[471]  Slawomir Koziel,et al.  Model management for cost-efficient surrogate-based optimisation of antennas using variable-fidelity electromagnetic simulations , 2012 .

[472]  J. Henrich,et al.  The Moral Machine experiment , 2018, Nature.

[473]  Eli Tziperman,et al.  The Oceanographic Data Assimilation Problem: Overview, Motivation and Purposes , 1996 .

[474]  Omer San,et al.  An artificial neural network framework for reduced order modeling of transient flows , 2018, Commun. Nonlinear Sci. Numer. Simul..

[475]  L. Ballentine Einstein's Interpretation of Quantum Mechanics , 1972 .

[476]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[477]  J. S. Zuback,et al.  Building blocks for a digital twin of additive manufacturing , 2017 .

[478]  Yu Tsao,et al.  Bone-conducted speech enhancement using deep denoising autoencoder , 2018, Speech Commun..

[479]  Chris Snider,et al.  Early Stage Digital-Physical Twinning to Engage Citizens with City Planning and Design , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[480]  Maciej Zaremba,et al.  Resource Optimisation in IoT Cloud Systems by Using Matchmaking and Self-management Principles , 2013, Future Internet Assembly.

[481]  Ely Salwana,et al.  Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning , 2019, Engineering Applications of Computational Fluid Mechanics.

[482]  John Ahmet Erkoyuncu,et al.  A systematic review of augmented reality applications in maintenance , 2018 .

[483]  Nabeel Vandayar,et al.  A Comparison of Skin Detection Algorithms for Hand Gesture Recognition , 2019, 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA).

[484]  Jamey Jacob,et al.  Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems , 2018, Atmosphere.

[485]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[486]  Hang Yu,et al.  Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things , 2019, Future Gener. Comput. Syst..

[487]  T. Mukherjee,et al.  A digital twin for rapid qualification of 3D printed metallic components , 2019, Applied Materials Today.

[488]  Athanasios V. Vasilakos,et al.  Big data analytics: a survey , 2015, Journal of Big Data.

[489]  Anantha Chandrakasan,et al.  Modern microprocessor built from complementary carbon nanotube transistors , 2019, Nature.

[490]  Anthony Atala,et al.  Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. , 2016, Drug discovery today.

[491]  Simo Särkkä,et al.  Gaussian filtering and smoothing for continuous-discrete dynamic systems , 2013, Signal Process..

[492]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[493]  Barry Saltzman,et al.  A low‐order dynamical model of global climatic variability over the full Pleistocene , 1990 .