Counting Carambolas

We give upper and lower bounds on the maximum and minimum number of geometric configurations of various kinds present (as subgraphs) in a triangulation of n points in the plane. Configurations of interest include convex polygons, star-shaped polygons and monotone paths. We also consider related problems for directed planar straight-line graphs.

[1]  Raimund Seidel,et al.  On the Number of Cycles in Planar Graphs , 2007, COCOON.

[2]  Marc Noy,et al.  Flipping Edges in Triangulations , 1996, SCG '96.

[3]  Adrian Dumitrescu,et al.  Monotone Paths in Planar Convex Subdivisions and Polytopes , 2013 .

[4]  Micha Sharir,et al.  Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn's technique , 2011, SoCG '12.

[5]  Csaba D. Tóth,et al.  Counting Plane Graphs: Flippability and Its Applications , 2011, WADS.

[6]  Csaba D. Tóth,et al.  Convex Polygons in Geometric Triangulations , 2015, WADS.

[7]  János Pach,et al.  Monotone drawings of planar graphs , 2002, J. Graph Theory.

[8]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[11]  Ferran Hurtado,et al.  On the Number of Plane Geometric Graphs , 2007, Graphs Comb..

[12]  János Pach,et al.  Monotone drawings of planar graphs , 2004 .

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  Maarten Löffler,et al.  How Many Potatoes Are in a Mesh? , 2012, ISAAC.

[15]  Csaba D. Tóth,et al.  Bounds on the Maximum Multiplicity of Some Common Geometric Graphs , 2013, SIAM J. Discret. Math..

[16]  Csaba D. Tóth,et al.  Monotone Paths in Planar Convex Subdivisions , 2012, COCOON.

[17]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.