Increasing frequency of extreme El Niño events due to greenhouse warming

Extreme El Nino events cause global disruption of weather patterns and affect ecosystems and agriculture through changes in rainfall. Model projections show that a doubling in the occurrence of such extreme episodes is caused by increased surface warming of the eastern equatorial Pacific Ocean, which results in the atmospheric conditions required for these event to occur.

[1]  Meteorology: Anomalous El Niño of 1982–83 , 1983, Nature.

[2]  Anomalous El Niño of 1982-83 , 1983 .

[3]  G. Merlen The 1982—83 El Niño: some of its consequences for Galápagos wildlife , 1984 .

[4]  G. Merlen,et al.  The impact of the 1982–1983 El Niño‐Southern Oscillation on seabirds in the Galapagos Islands, Ecuador , 1987 .

[5]  P. Glynn,et al.  Elimination of Two Reef-Building Hydrocorals Followingthe 1982-83 El Ni�o Warming Event , 1991, Science.

[6]  P. Tyson,et al.  Sea-surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall , 1995 .

[7]  R. Kerr Big El Niños Ride the Back of Slower Climate Change , 1999, Science.

[8]  A. Timmermann,et al.  Increased El Niño frequency in a climate model forced by future greenhouse warming , 1999, Nature.

[9]  S. Changnon Impacts of 1997-98 El Niño Generated Weather in the United States. , 1999 .

[10]  Michael J. McPhaden,et al.  El Niño: The child prodigy of 1997-98 , 1999, Nature.

[11]  S. Changnon,et al.  El Niño, 1997-1998 : the climate event of the century , 2000 .

[12]  Economic and Social Effects of El Niño in Ecuador , 1997-1998 , 2000 .

[13]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[14]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[15]  Peter C Austin,et al.  Bootstrap Methods for Developing Predictive Models , 2004 .

[16]  G. Vecchi,et al.  Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing , 2006, Nature.

[17]  G. Vecchi,et al.  Global Warming and the Weakening of the Tropical Circulation , 2007 .

[18]  Swadhin K. Behera,et al.  El Niño Modoki and its possible teleconnection , 2007 .

[19]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[20]  A New Era in Climate Change Research , 2007 .

[21]  B. Kirtman,et al.  El Niño in a changing climate , 2009, Nature.

[22]  G. Vecchi,et al.  Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models , 2010 .

[23]  A. Timmermann,et al.  The impact of global warming on the tropical Pacific Ocean and El Niño , 2010 .

[24]  C. Deser,et al.  Global warming pattern formation: sea surface temperature and rainfall. , 2010 .

[25]  I. Kang,et al.  Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations , 2010 .

[26]  S. Xie,et al.  Changes in the sea surface temperature threshold for tropical convection , 2010 .

[27]  D. E. Harrison,et al.  Characterizing Warm-ENSO Variability in the Equatorial Pacific: An OLR Perspective*,+ , 2010 .

[28]  G. Madec,et al.  Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis , 2011 .

[29]  M. Webb,et al.  Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles , 2011 .

[30]  Young Ho Kim,et al.  El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model , 2011 .

[31]  A. Timmermann,et al.  More extreme swings of the South Pacific convergence zone due to greenhouse warming , 2012, Nature.

[32]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[33]  C. Deser,et al.  Slowdown of the Walker circulation driven by tropical Indo-Pacific warming , 2012, Nature.