Evaluation of inhibition effect on microbiologically influenced corrosion of Ti-5Cu alloy against marine Bacillus vietnamensis biofilm.

[1]  Jinlong Zhao,et al.  Effect of anodic polarization treatment on microbiologically influenced corrosion resistance of Cu-bearing stainless steel against marine Pseudomonas aeruginosa , 2022, Corrosion Science.

[2]  Hyoung Seop Kim,et al.  Processing and Microstructure of Ti-Cu Binary Alloys: A Comprehensive Review , 2022, Progress in Materials Science.

[3]  Shuyuan Zhang,et al.  Preliminary study on biocorrosion inhibition effect of Ti-5Cu alloy against marine bacterium Pseudomonas aeruginosa , 2021, Applied Surface Science.

[4]  Liang Yang,et al.  Tensile properties of Ti–48Al–2Cr–2Nb alloy having similarly oriented lamellae with fine lamellar spacing facilitated by suction casting , 2021, Materials Science and Engineering: A.

[5]  Shuyuan Zhang,et al.  Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa , 2021, Journal of Materials Science & Technology.

[6]  T. Gu,et al.  Extracellular electron transfer in microbial biocorrosion , 2021 .

[7]  F. Pineda,et al.  Influence of Bacillus safensis and Bacillus pumilus on the electrochemical behavior of 2024-T3 aluminum alloy. , 2021, Bioelectrochemistry.

[8]  J. Galipaud,et al.  Role of Alloying Elements in Passive and Transpassive Behavior of Ni–Cr-Based Alloys in Borate Buffer Solution , 2021, Journal of The Electrochemical Society.

[9]  M. Cassir,et al.  Corrosion analysis of AISI 430 stainless steel in the presence of Escherichia coli and Staphylococcus aureus , 2021 .

[10]  E. Asselin,et al.  Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions , 2021 .

[11]  G. Qin,et al.  Antibacterial metals and alloys for potential biomedical implants , 2021, Bioactive materials.

[12]  B. Normand,et al.  Relationship between the Resistivity Profiles Obtained from the Power Law Model and the Physico-Chemical Properties of Passive Films , 2021 .

[13]  D. Fabrègue,et al.  Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses , 2020, Corrosion Science.

[14]  F. Lauro,et al.  Microbially influenced corrosion—Any progress? , 2020 .

[15]  C. Chao,et al.  Effect of Ti2Cu precipitation on antibacterial property of Ti-5Cu alloy. , 2020, Materials science & engineering. C, Materials for biological applications.

[16]  Daniela Silva,et al.  Effect of porosity on mechanical and electrochemical properties of Ti–6Al–4V alloy , 2020 .

[17]  Shenglin Jiang,et al.  Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel , 2019, Electrochimica Acta.

[18]  Fu-hui Wang,et al.  Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. , 2019, Bioelectrochemistry.

[19]  Zhenlun Song,et al.  Effect of proteases secreted from a marine isolated bacterium Bacillus vietnamensis on the corrosion behaviour of different alloys. , 2019, Bioelectrochemistry.

[20]  T. Gu,et al.  Microbiologically influenced corrosion and current mitigation strategies: A state of the art review , 2019, International Biodeterioration & Biodegradation.

[21]  T. Gu,et al.  Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria , 2019, Journal of Materials Science & Technology.

[22]  Shujun Li,et al.  Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting , 2018, Corrosion Science.

[23]  Ke Yang,et al.  Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract , 2018, International Biodeterioration & Biodegradation.

[24]  N. Pébère,et al.  Impedance analysis of film-forming amines for the corrosion protection of a carbon steel , 2018, Electrochimica Acta.

[25]  R. Bagheri,et al.  Simulation of the marine environment using bioreactor for investigation of 2507 duplex stainless steel corrosion in the presence of marine isolated Bacillus Vietnamensis bacterium , 2018 .

[26]  M. Escudero,et al.  Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. , 2018, Journal of biomedical materials research. Part B, Applied biomaterials.

[27]  Dawei Zhang,et al.  Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms , 2017, Journal of Materials Science & Technology.

[28]  C. Man,et al.  Electrochemical Behavior and Surface Characteristics of Pure Titanium during Corrosion in Simulated Desulfurized Flue Gas Condensates , 2018 .

[29]  M. Dargusch,et al.  A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments , 2017 .

[30]  J. Blamey,et al.  Electrochemical characterization of aluminum alloy AA2024 − T3 influenced by bacteria from Antarctica , 2017 .

[31]  Lai‐Chang Zhang,et al.  Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline , 2017 .

[32]  O. Stéphan,et al.  Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy , 2017 .

[33]  Rui Liu,et al.  Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis , 2016, Scientific Reports.

[34]  M. Orazem,et al.  Comparison of different methods for measuring the passive film thickness on metals , 2016 .

[35]  Q. Qu,et al.  Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2 , 2015 .

[36]  I. Cole,et al.  Critical review: Microbially influenced corrosion of buried carbon steel pipes , 2014 .

[37]  K. Nakajo,et al.  Microbiologically Induced Corrosive Properties of the Titanium Surface , 2014, Journal of dentistry research.

[38]  Vincent Vivier,et al.  Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II. Applications , 2010 .

[39]  H. Fallowfield,et al.  Microbially influenced corrosion of galvanized steel pipes in aerobic water systems , 2010, Journal of applied microbiology.

[40]  R. Dayal,et al.  Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis , 2010 .

[41]  W. Teughels,et al.  Do oral biofilms influence the wear and corrosion behavior of titanium? , 2010, Biofouling.

[42]  Amauri Garcia,et al.  Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications , 2010 .

[43]  H. Tsuchiya,et al.  Prevention of pin tract infection with titanium-copper alloys. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[44]  M. Amin Metastable and stable pitting events on Al induced by chlorate and perchlorate anions—Polarization, XPS and SEM studies , 2009 .

[45]  A. Robin,et al.  Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva , 2007 .

[46]  K. Leinartas,et al.  Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection , 2006 .

[47]  A. Trueman Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements , 2005 .

[48]  S. V. Narasimhan,et al.  Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris) , 2005 .

[49]  A. Jayaraman,et al.  Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion , 1997, Applied Microbiology and Biotechnology.

[50]  G. Frankel,et al.  Metastable Pitting of Stainless Steel , 1987 .

[51]  W. P. Iverson,et al.  Microbial Corrosion of Metals , 1987 .

[52]  C. Kuhr,et al.  Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil , 1961 .