The Pure Rotational Spectra of AuCl and AuBr.

The pure rotational spectra of AuCl and AuBr have been measured in the v = 0 and 1 (also for v = 2 for Au(35)Cl) vibrational states in the 5-22 GHz spectral region using a cavity pulsed-jet Fourier transform microwave spectrometer. The molecules were prepared by ablating Au metal in the presence of Cl(2) or Br(2) entrained in the Ar or Ne backing gas of the jet. The equilibrium internuclear distances r(e) have been determined along with estimates of the harmonic vibration frequencies and the dissociation energies. The ionic characters of the AuCl and AuBr bonds have been estimated from the halogen nuclear quadrupole-coupling constants to be i(c) approximately 38%. The gold nuclear quadrupole coupling constants change appreciably from AuF to AuCl to AuBr (including a sign change), indicating substantial differences in their electronic structures at Au; these variations could not be accounted for with a simple Townes-Dailey calculation. Copyright 2000 Academic Press.

[1]  C. Evans,et al.  Confirmation of the Existence of Gold(I) Fluoride, AuF: Microwave Spectrum and Structure. , 2000 .

[2]  Gerry,et al.  The Hyperfine Structures of ScCl and ScF. , 2000, Journal of molecular spectroscopy.

[3]  Gerry,et al.  19F Nuclear Spin-Rotation Constant of Yttrium Monofluoride. , 1999, Journal of molecular spectroscopy.

[4]  M. Gerry,et al.  Rotational spectra and hyperfine constants of ZrO and ZrS , 1999 .

[5]  O'brien,et al.  Fourier Transform Emission Spectroscopy of the Visible Transitions of AuCl. , 1999, Journal of molecular spectroscopy.

[6]  Gerry,et al.  The Pure Rotational Spectrum of Yttrium Monoiodide. , 1998, Journal of molecular spectroscopy.

[7]  M. Urban,et al.  COMPARATIVE STUDY OF ELECTRON CORRELATION AND RELATIVISTIC EFFECTS IN CUF,AGF, AND AUF , 1998 .

[8]  Christoph van Wüllen,et al.  Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations , 1998 .

[9]  K. Walker,et al.  Microwave Fourier Transform Spectroscopy of Magnesium Sulfide Produced by Laser Ablation , 1997 .

[10]  P. Schwerdtfeger Spectroscopic properties for the 1Σ+ ground state of AuCl A scalar relativistic coupled cluster study , 1995 .

[11]  P. Schwerdtfeger,et al.  Spectroscopic properties for the ground states of AuF, AuF+, AuF2, and Au2F2: A pseudopotential scalar relativistic Mo/ller–Plesset and coupled‐cluster study , 1995 .

[12]  B. A. Hess,et al.  Can AuF be synthesized? A theoretical study using relativistic configuration interaction and plasma modeling techniques , 1994 .

[13]  A. Legon,et al.  Equilibrium nuclear quadrupole coupling constants from the rotational spectrum of BrCl: a source of the electric quadrupole moment ratios Q ( 79 Br)/ Q ( 81 Br) and Q ( 35 Cl)/ Q ( 37 Cl) , 1993 .

[14]  J. P. Connelly,et al.  The Hyperfine Structures of CuCl and CuBr in Their Ground States Studied by Microwave Fourier Transform Spectroscopy , 1993 .

[15]  I. Mills,et al.  Quantities, Units and Symbols in Physical Chemistry , 1993 .

[16]  N. Rösch,et al.  A scalar-relativistic extension of the linear combination of Gaussian-type orbitals local density functional method: application to AuH, AuCl and Au2 , 1992 .

[17]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[18]  P. Schwerdtfeger Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2 , 1991 .

[19]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[20]  Michael J. Taylor,et al.  Relativistic effects in gold chemistry. 3. Gold(I) complexes , 1990 .

[21]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. I. Diatomic gold compounds , 1989 .

[22]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[23]  D. Ellis,et al.  Electronic structure and Mössbauer hyperfine interactions of Au(I) compounds , 1980 .

[24]  J. G. Snijders,et al.  On the origin of relativistic bond contraction , 1980 .

[25]  H. Basch,et al.  Relativistic effects in ab initio effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH , 1979 .

[26]  D. Esquivel,et al.  Electronic configuration and nuclear quadrupole interaction in higher transition elements , 1979 .

[27]  W. R. Wadt,et al.  Ab initio studies of AuH, AuCl, HgH and HgCl2 using relativistic effective core potentials , 1978 .

[28]  Walter Gordy,et al.  Microwave Molecular Spectra , 1970 .

[29]  Wilfred G. Norris,et al.  Microwave Spectrum of Silver Bromide , 1966 .

[30]  C. Townes,et al.  Determination of Electronic Structure of Molecules from Nuclear Quadrupole Effects , 1949 .

[31]  B. A. Hess,et al.  Accurate electric field gradients for the coinage metal chlorides using the PCNQM method , 2000 .

[32]  Yunjie Xu,et al.  The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .

[33]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[34]  R. Puddephatt The chemistry of gold , 1978 .

[35]  Wilfred G. Norris,et al.  Microwave Spectrum of Silver Chloride , 1966 .