The Incomplete Factorization Multigraph Algorithm

We present a new family of multigraph algorithms, ILU-MG, based upon an incomplete sparse matrix factorization using a particular ordering and allowing a limited amount of fill-in. While much of the motivation for multigraph comes from multigrid ideas, ILU-MG is distinctly different from algebraic multilevel methods. The graph of the sparse matrix A is recursively coarsened by eliminating vertices using a graph model similar to Gaussian elimination. Incomplete factorizations are obtained by allowing only the fill-in generated by the vertex parents associated with each vertex. Multigraph is numerically compared with algebraic multigrid on some examples arising from discretizations of partial differential equations on unstructured grids.

[1]  Vipin Kumar,et al.  Analysis of Multilevel Graph Partitioning , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[2]  J. Dendy Black box multigrid , 1982 .

[3]  R. Bank,et al.  An algorithm for coarsening unstructured meshes , 1996 .

[4]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[5]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[6]  Constantin Popa,et al.  Interpolation and Related Coarsening Techniques for the Algebraic Multigrid Method , 1994 .

[7]  Robert D. Skeel,et al.  An algebraic hierarchical basis preconditioner , 1992 .

[8]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[9]  Stanley C. Eisenstat,et al.  Algorithms and Data Structures for Sparse Symmetric Gaussian Elimination , 1981 .

[10]  R. Xu The Hierarchical Basis Multigrid Method And Incomplete Lu Decomposition , 1994 .

[11]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[12]  Howard C. Elman,et al.  Algebraic Analysis of the Hierarchical Basis Preconditioner , 1995, SIAM J. Matrix Anal. Appl..

[13]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[14]  Zhong-Zhi Bai A class of hybrid algebraic multilevel preconditioning methods , 1996 .

[15]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[16]  R. K. Smith,et al.  General sparse elimination requires no permanent integer storage , 1987 .

[17]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[18]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[19]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[20]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[21]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .