Urban camouflage assessment through visual search and computational saliency

Abstract. We present a new method to derive a multiscale urban camouflage pattern from a given set of background image samples. We applied this method to design a camouflage pattern for a given (semi-arid) urban environment. We performed a human visual search experiment and a computational evaluation study to assess the effectiveness of this multiscale camouflage pattern relative to the performance of 10 other (multiscale, disruptive and monotonous) patterns that were also designed for deployment in the same operating theater. The results show that the pattern combines the overall lowest detection probability with an average mean search time. We also show that a frequency-tuned saliency metric predicts human observer performance to an appreciable extent. This computational metric can therefore be incorporated in the design process to optimize the effectiveness of camouflage patterns derived from a set of background samples.

[1]  B. Cole,et al.  The effect of the density of background elements on the conspicuity of objects , 1982, Vision Research.

[2]  Johannes Baumbach Colour and pattern composition to blend objects into a natural environment , 2008 .

[3]  D. Pelli,et al.  The uncrowded window of object recognition , 2008, Nature Neuroscience.

[4]  Yuanzhen Li,et al.  Feature congestion: a measure of display clutter , 2005, CHI.

[5]  Carl E. Halford,et al.  Rotational clutter metric , 2009 .

[6]  Dirk Walther,et al.  Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics. , 2006 .

[7]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[8]  Gregory Hobson,et al.  A normalized clutter measure for images , 1988, Comput. Vis. Graph. Image Process..

[9]  Chiuhsiang Joe Lin,et al.  Visual Assessment of Camouflaged Targets with Different Background Similarities , 2012, Perceptual and motor skills.

[10]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[11]  Neil D. B. Bruce Features that draw visual attention: an information theoretic perspective , 2005, Neurocomputing.

[12]  L. Itti Author address: , 1999 .

[13]  Matei Mancas,et al.  Image perception : Relative influence of bottom-up and top-down attention , 2008 .

[14]  John K. Tsotsos,et al.  An Information Theoretic Model of Saliency and Visual Search , 2008, WAPCV.

[15]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[16]  A. Thayer,et al.  Concealing-coloration in the animal kingdom : an exposition of the laws of disguise through color and pattern being a summary of Abbott H. Thayer's discoveries , 1909 .

[17]  Laurent Itti,et al.  Interesting objects are visually salient. , 2008, Journal of vision.

[18]  M. Land,et al.  The Roles of Vision and Eye Movements in the Control of Activities of Daily Living , 1998, Perception.

[19]  Benoit M. Macq,et al.  Perceptual Image Representation , 2007, EURASIP J. Image Video Process..

[20]  Gordon E. Legge,et al.  Human efficiency for recognizing and detecting low-pass filtered objects , 1995, Vision Research.

[21]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[22]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[23]  Liming Zhang,et al.  Biological Plausibility of Spectral Domain Approach for Spatiotemporal Visual Saliency , 2008, ICONIP.

[24]  Danielle Delouche Cubisme et camouflage , 1993 .

[25]  Stanley R. Rotman,et al.  Evaluation of human detection performance of targets embedded in natural and enhanced infrared images using image metrics , 2000 .

[26]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[27]  J. B. Kernan,et al.  An Information‐Theoretic Approach* , 1971 .

[28]  H. B. Cott,et al.  Adaptive Coloration in Animals , 1940 .

[29]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[30]  Benoît Macq,et al.  Computational Attention for Event Detection , 2007, ICVS 2007.

[31]  Frans W Cornelissen,et al.  A crowding model of visual clutter. , 2009, Journal of vision.

[32]  B. Cole,et al.  The effect of variability of background elements on the conspicuity of objects , 1984, Vision Research.

[33]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[34]  G Moraglia,et al.  On the detection of signals embedded in natural scenes , 1986, Perception & psychophysics.

[35]  Va Billock,et al.  What visual discrimination of fractal textures can tell us about discrimination of camouflaged targets , 2009 .

[36]  Matthew H Tong,et al.  SUN: Top-down saliency using natural statistics , 2009, Visual cognition.

[37]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[38]  Benoit M. Macq,et al.  A Rarity-Based Visual Attention Map - Application to Texture Description , 2006, 2006 International Conference on Image Processing.

[39]  Alexander Toet,et al.  Computational versus Psychophysical Bottom-Up Image Saliency: A Comparative Evaluation Study , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Damir Čemerin,et al.  IV , 2011 .

[41]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[42]  Alexander Toet,et al.  Structural similarity determines search time and detection probability , 2010 .

[43]  Zygmunt Pizlo,et al.  Camouflage and visual perception , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[45]  Stanley R. Rotman,et al.  Textural metrics for clutter affecting human target acquisition , 1996, Defense, Security, and Sensing.

[46]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[47]  Mohan M. Trivedi,et al.  Developing texture-based image clutter measures for object detection , 1992 .

[48]  A. Thayer The Law Which Underlies Protective Coloration , 1896 .

[49]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[50]  A. Dugas,et al.  Universal Camouflage for the Future Warrior , 2004 .

[51]  Roy R. Behrens,et al.  The Role of Artists in Ship Camouflage During World War I , 1999, Leonardo.

[52]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[53]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[54]  T. Foulsham,et al.  Quarterly Journal of Experimental Psychology: in press Visual saliency and semantic incongruency influence eye movements when , 2022 .

[55]  Gil Tidhar,et al.  Modeling human search and target acquisition performance: IV. detection probability in the cluttered environment , 1994 .

[56]  Gil Tidhar,et al.  Clutter metrics for target detection systems , 1994 .

[57]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[58]  Stanley R. Rotman,et al.  Evaluating human detection performance of targets and false alarms, using a statistical texture image metric , 2000 .

[59]  Theo J. Doll,et al.  Target detection in urban clutter , 1989, IEEE Trans. Syst. Man Cybern..

[60]  Stanley R. Rotman,et al.  Evaluating TNO Human Target Detection Experimental Results Agreement with Various Image Metrics , 2000 .

[61]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1994, Comput. Vis. Image Underst..

[62]  A H Wertheim,et al.  Visual conspicuity: A new simple standard, its reliability, validity and applicability , 2010, Ergonomics.

[63]  A. Camurri,et al.  TRACKING-DEPENDENT AND INTERACTIVE VIDEO PROJECTION , 2008 .

[64]  Marshall Weathersby,et al.  Detection Performance in Clutter with Variable Resolution , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[65]  M. Bravo,et al.  A scale invariant measure of clutter. , 2008, Journal of vision.

[66]  Roy R. Behrens,et al.  The Weave (and Warp) of Invention , 1974 .