A Distance Determination to the Small Magellanic Cloud with an Accuracy of Better than Two Percent Based on Late-type Eclipsing Binary Stars

We present a new study of late-type eclipsing binary stars in the Small Magellanic Cloud (SMC) undertaken with the aim of improving the distance determination to this important galaxy. A sample of 10 new detached, double-lined eclipsing binaries indentified from the OGLE variable star catalogues and consisting of F- and G-type giant components has been analysed. The absolute physical parameters of the individual components have been measured with a typical accuracy of better than 3%. All but one of the systems consist of young and intermediate population stars with masses in the range of 1.4 to 3.8 M_Sun. This new sample has been combined with five SMC eclipsing binaries previously published by our team. Distances to the binary systems were calculated using a surface brightness - color calibration. The targets form an elongated structure, highly inclined to the plane of the sky. The distance difference between the nearest and most-distant system amounts to 10 kpc with the line of sight depth reaching 7 kpc. We find tentative evidence of the existence of a spherical stellar sub-structure (core) in the SMC coinciding with its stellar center, containing about 40% of the young and intermediate age stars in the galaxy. The radial extension of this sub-structure is ~1.5 kpc. We derive a distance to the SMC center of D_SMC=62.44 +/- 0.47 (stat.) +/- 0.81 (syst.) kpc corresponding to a distance modulus (m-M)_SMC=18.977 +/- 0.016 +/- 0.028 mag, representing an accuracy of better than 2%.

[1]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[2]  Pierre Kervella,et al.  Mass and p-factor of the Type II Cepheid OGLE-LMC-T2CEP-098 in a Binary System , 2017, 1704.07782.

[3]  W. Gieren,et al.  Calibrating the surface brightness – color relation for late-type red giants stars in the visible domain using VEGA/CHARA interferometric observations , 2020, 2006.16609.

[4]  G. Piotto,et al.  Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4) , 2008, 0808.1414.

[6]  G. Worthey,et al.  AN EMPIRICAL UBV RI JHK COLOR–TEMPERATURE CALIBRATION FOR STARS , 2006, astro-ph/0604590.

[7]  J. Anderson,et al.  The Proper Motion Field of the Small Magellanic Cloud: Kinematic Evidence for Its Tidal Disruption , 2018, The Astrophysical Journal.

[8]  Slavek M. Rucinski,et al.  Spectral-Line Broadening Functions of W UMA-Type Binaries. III. W UMA , 1993 .

[9]  Joana M. Oliveira,et al.  The VMC survey – XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids , 2017, 1707.04500.

[10]  R. Beaton,et al.  Calibration of the Tip of the Red Giant Branch , 2003, The Astrophysical Journal.

[11]  W. Gieren,et al.  Observational calibration of the projection factor of Cepheids IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids , 2017, 1708.09851.

[12]  Joana M. Oliveira,et al.  The VMC survey , 2015, Astronomy & Astrophysics.

[13]  R. Hilditch,et al.  Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance , 2003, astro-ph/0411672.

[14]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[15]  Harinder P. Singh,et al.  Morphology of the Small Magellanic Cloud using multiwavelength photometry of classical Cepheids , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  M. Moretti,et al.  THE VMC SURVEY. XIX. CLASSICAL CEPHEIDS IN THE SMALL MAGELLANIC CLOUD , 2016, 1602.09005.

[17]  J. Southworth The solar-type eclipsing binary system LL Aquarii , 2013, 1308.1320.

[18]  Pavlos Protopapas,et al.  Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO Project: The Sample , 2007, 0711.1617.

[19]  J. Dickey,et al.  On the dynamics of the Small Magellanic Cloud through high-resolution ASKAP H iobservations , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  P. Crowther,et al.  The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited , 2018, 1804.06417.

[21]  R. Poleski,et al.  The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge , 2016, 1701.03105.

[22]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[23]  To Appear in ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE EFFECTIVE TEMPERATURE SCALE OF FGK STARS. II. Teff: COLOR: [Fe/H] CALIBRATIONS , 2008 .

[24]  A. Jacyszyn-Dobrzeniecka OGLE-ing the Magellanic System: Three-Dimensional Structure , 2018, Proceedings of the International Astronomical Union.

[25]  W. Gieren,et al.  Fundamental properties of red-clump stars from long-baseline H-band interferometry , 2018, Astronomy & Astrophysics.

[26]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[27]  L. Girardi,et al.  The VMC survey - XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud , 2015, 1501.05347.

[28]  Paolo Gasbarri,et al.  Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach , 2004 .

[29]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[30]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[31]  Robert E. Wilson,et al.  Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .

[32]  S. Hekker,et al.  Precise radial velocities of giant stars. III. Spectroscopic stellar parameters , 2007, 0709.1145.

[33]  R. Kudritzki,et al.  A Precision Determination of the Effect of Metallicity on Cepheid Absolute Magnitudes in VIJHK Bands from Magellanic Cloud Cepheids , 2017, 1705.10855.

[34]  R. Kudritzki,et al.  THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD , 2012, 1203.2517.

[35]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[36]  Robert E. Wilson,et al.  Third-Body Parameters from Whole Light and Velocity Curves , 2007 .

[37]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[38]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? III. THE SMALL MAGELLANIC CLOUD , 2014, 1504.00417.

[39]  Q. Parker,et al.  The Hα surface brightness–radius relation: a robust statistical distance indicator for planetary nebulae , 2015, 1504.01534.

[40]  W. Van Hamme,et al.  New limb-darkening coefficients for modeling binary star light curves , 1993 .

[41]  R. E. Wilson Accuracy and efficiency in the binary star reflection effect , 1990 .

[42]  J. Mould The Metallicity Sensitivity of a Surface Brightness Temperature Scale , 2019, Publications of the Astronomical Society of the Pacific.

[43]  A. Piatti The star field age–metallicity relationship of the Small Magellanic Cloud , 2012 .

[44]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[45]  Johns Hopkins University,et al.  Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars , 1999, astro-ph/9911367.

[46]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[47]  B. Paczynski,et al.  Cluster AgeS Experiment: The Age and Distance of the Globular Cluster ω Centauri Determined from Observations of the Eclipsing Binary OGLEGC 17 , 2000, astro-ph/0012493.

[48]  R. Carrera,et al.  Revealing the tidal scars of the Small Magellanic Cloud , 2020, Monthly Notices of the Royal Astronomical Society.

[49]  L. Casagrande,et al.  An absolutely calibrated T eff scale from the infrared flux method. Dwarfs and subgiants , 2010, 1001.3142.

[50]  H. Levato,et al.  Separation of composite spectra: the spectroscopic detection of an eclipsing binary star , 2006 .

[51]  D. Kato The IRSF Magellanic Clouds Point Source Catalog , 2007 .

[52]  G. Piotto,et al.  DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS , 2010, 1008.4372.

[53]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[54]  R. E. Wilson Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves , 1979 .

[55]  A. Subramaniam,et al.  THE THREE-DIMENSIONAL STRUCTURE OF THE SMALL MAGELLANIC CLOUD , 2011, 1109.3980.

[56]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[57]  A. Drake,et al.  Calibration of the MACHO Photometry Database , 1998 .

[58]  D. Latham,et al.  ROTATIONAL AND RADIAL VELOCITIES FOR A SAMPLE OF 761 HIPPARCOS GIANTS AND THE ROLE OF BINARITY , 2007 .

[59]  P. Maxted,et al.  Eclipsing binaries in open clusters. II. V453 Cyg in NGC 6871 , 2004, astro-ph/0403572.

[60]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[61]  Pierre Kervella,et al.  The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters , 2018, The Astrophysical Journal.

[62]  W. Gieren,et al.  The Araucaria Project: Multi-band Calibrations of the TRGB Absolute Magnitude , 2018, The Astronomical Journal.

[63]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE DISTANCE AND STRUCTURE OF THE SMC AS REVEALED BY MID-INFRARED OBSERVATIONS OF CEPHEIDS , 2015, 1502.06995.

[64]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[65]  Eclipsing Binary Stars in the OGLE-III Fields of the Small Magellanic Cloud , 2013, 1310.3272.

[66]  G. Clementini,et al.  The VMC survey: I. Strategy and first data , 2010, 1012.5193.

[67]  R. Hilditch,et al.  Ten eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and SMC distance , 2002, astro-ph/0210295.

[68]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[69]  R. de Grijs,et al.  The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars , 2017, 1709.09064.

[70]  F. Royer,et al.  VLT multi-object spectroscopy of 33 eclipsing binaries in the Small Magellanic Cloud - New distance and depth of the SMC, and a record-breaking apsidal motion , 2010, 1005.4336.

[71]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[72]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[73]  B. Pilecki,et al.  A distance to the Large Magellanic Cloud that is precise to one per cent , 2019, Nature.

[74]  W. Gieren,et al.  The effect of metallicity on Cepheid period-luminosity relations from a Baade-Wesselink analysis of Cepheids in the Milky Way and Magellanic Clouds , 2018, Astronomy & Astrophysics.

[75]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[76]  E. Grebel,et al.  NEW OPTICAL REDDENING MAPS OF THE LARGE AND SMALL MAGELLANIC CLOUDS , 2011, 1104.2325.

[77]  D. Mourard,et al.  Precise calibration of the dependence of surface brightness–colour relations on colour and class for late-type stars (Corrigendum) , 2020, Astronomy & Astrophysics.

[78]  B. Sato,et al.  Stellar Parameters and Elemental Abundances of Late-G Giants , 2008, 0805.2434.

[79]  E. Masana,et al.  Effective temperature scale and bolometric corrections from 2MASS photometry , 2006, astro-ph/0601049.

[80]  R. Kudritzki,et al.  Empirical Calibration of the Reddening Maps in the Magellanic Clouds , 2020, The Astrophysical Journal.

[81]  Heidelberg,et al.  Structure of the SMC - Stellar component distribution from 2MASS data , 2008, 0812.0880.