The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters

The OLI (Operational Land Imager) sensor on Landsat-8 has the potential to meet the requirements of remote sensing of water color. However, the optical properties of inland waters are more complex than those of oceanic waters, and inland atmospheric correction presents additional challenges. We examined the performance of atmospheric correction (AC) methods for remote sensing over three highly turbid or hypereutrophic inland waters in China: Lake Hongze, Lake Chaohu, and Lake Taihu. Four water-AC algorithms (SWIR (Short Wave Infrared), EXP (Exponential Extrapolation), DSF (Dark Spectrum Fitting), and MUMM (Management Unit Mathematics Models)) and three land-AC algorithms (FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), 6SV (a version of Second Simulation of the Satellite Signal in the Solar Spectrum), and QUAC (Quick Atmospheric Correction)) were assessed using Landsat-8 OLI data and concurrent in situ data. The results showed that the EXP (and DSF) together with 6SV algorithms provided the best estimates of the remote sensing reflectance (Rrs) and band ratios in water-AC algorithms and land-AC algorithms, respectively. AC algorithms showed a discriminating accuracy for different water types (turbid waters, in-water algae waters, and floating bloom waters). For turbid waters, EXP gave the best Rrs in visible bands. For the in-water algae and floating bloom waters, however, all water-algorithms failed due to an inappropriate aerosol model and non-zero reflectance at 1609 nm. The results of the study show the improvements that can be achieved considering SWIR bands and using band ratios, and the need for further development of AC algorithms for complex aquatic and atmospheric conditions, typical of inland waters.

[1]  Yong Q. Tian,et al.  Spatio-temporal variations of CDOM in shallow inland waters from a semi-analytical inversion of Landsat-8 , 2018, Remote Sensing of Environment.

[2]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[3]  John R. Schott,et al.  Retrieval of color producing agents in Case 2 waters using Landsat 8 , 2016 .

[4]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[5]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[6]  Lawrence S. Bernstein,et al.  Quick atmospheric correction code: algorithm description and recent upgrades , 2012 .

[7]  Kendall L. Carder,et al.  Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS , 2001 .

[8]  Menghua Wang,et al.  Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the U.S.: Two case studies , 2005 .

[9]  Ziauddin Ahmad,et al.  New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. , 2010, Applied optics.

[10]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[11]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[12]  Nilton Nobuhiro Imai,et al.  Atmospheric correction assessment of SPOT-6 image and its influence on models to estimate water column transparency in tropical reservoir , 2016 .

[13]  A. Berk,et al.  FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[14]  Robert F. Chen,et al.  An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters , 2018, Remote Sensing of Environment.

[15]  Ronghua Ma,et al.  Variability of light absorption properties in optically complex inland waters of Lake Chaohu, China , 2017 .

[16]  Giulietta S. Fargion,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5. Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols. , 2003 .

[17]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  F. Muller‐Karger,et al.  Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method , 2000 .

[19]  E. Novo,et al.  Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities , 2015 .

[20]  Raphael M. Kudela,et al.  Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters , 2015 .

[21]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[22]  Ronghua Ma,et al.  Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales , 2017 .

[23]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[24]  Jianzhong Lu,et al.  Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China , 2016, Environmental Science and Pollution Research.

[25]  K. Ruddick,et al.  Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements , 2011 .

[26]  K. Ruddick,et al.  Turbid wakes associated with offshore wind turbines observed with Landsat 8 , 2014 .

[27]  Fayma Mushtaq,et al.  Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery , 2017 .

[28]  R. Ma,et al.  Bio‐optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing , 2006 .

[29]  Edward J. Knight,et al.  Landsat-8 Operational Land Imager Design, Characterization and Performance , 2014, Remote. Sens..

[30]  K. Tachiiri Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: A case study in the Marsabit District, Kenya , 2005 .

[31]  C. Mobley,et al.  Estimation of the remote-sensing reflectance from above-surface measurements. , 1999, Applied optics.

[32]  Yunmei Li,et al.  An Improved Land Target-Based Atmospheric Correction Method for Lake Taihu , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[34]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[35]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[36]  Menghua Wang,et al.  An assessment of the black ocean pixel assumption for MODIS SWIR bands , 2009 .

[37]  Quinten Vanhellemont,et al.  Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters , 2017, Remote. Sens..

[38]  John R. Schott,et al.  On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing , 2014 .

[39]  Chung-Ru Ho,et al.  Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids , 2014, Sensors.

[40]  K. Ruddick,et al.  Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. , 2001, Applied optics.

[41]  Ronghua Ma,et al.  Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China , 2010 .

[42]  Chuanmin Hu,et al.  Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea , 2017 .

[43]  Jingli Ren,et al.  Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. , 2016, The Science of the total environment.

[44]  Quinten Vanhellemont,et al.  Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications , 2018, Remote Sensing of Environment.

[45]  A. Gitelson,et al.  Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. , 2012, Water research.

[46]  Zhigang Cao,et al.  Determination of the Downwelling Diffuse Attenuation Coefficient of Lake Water with the Sentinel-3A OLCI , 2017, Remote. Sens..

[47]  Yongchao Zhao,et al.  CPBAC: A quick atmospheric correction method using the topographic information , 2016 .

[48]  Gabriel Navarro,et al.  Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system , 2018, International Journal of Applied Earth Observation and Geoinformation.

[49]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[50]  Menghua Wang,et al.  A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS☆ , 1994 .

[51]  Ngoc Thang Nguyen,et al.  Using Landsat-8 Images for Quantifying Suspended Sediment Concentration in Red River (Northern Vietnam) , 2018, Remote. Sens..

[52]  Howard R. Gordon,et al.  A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere. [Coastal Zone Color Scanner , 1981 .

[53]  Atmospheric Correction for Remotely-Sensed Ocean-Colour Products , 2009 .

[54]  Lawrence S. Bernstein,et al.  The Quick Atmospheric Correction (QUAC) Algorithm for Hyperspectral Image Processing: Extending QUAC to a Coastal Scene , 2015, 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[55]  Bryan A. Franz,et al.  Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS , 2015 .

[56]  David P. Hamilton,et al.  Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand , 2011 .

[57]  Brent N. Holben,et al.  Characteristics of aerosol types from AERONET sunphotometer measurements , 2010 .

[58]  Ziauddin Ahmad,et al.  Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. , 2017, Optics express.

[59]  Anthony J. Ratkowski,et al.  Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery , 2005 .

[60]  Quinten Vanhellemont,et al.  ATMOSPHERIC CORRECTION OF LANDSAT-8 IMAGERY USING SEADAS , 2014 .

[61]  A. Gitelson,et al.  A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation , 2008 .

[62]  W. Zhan,et al.  Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach , 2015 .

[63]  S. Maritorena,et al.  Atmospheric correction of satellite ocean color imagery: the black pixel assumption. , 2000, Applied optics.

[64]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[65]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[66]  Rebecca R. Essig,et al.  Water quality estimation of River plumes in Southern Lake Michigan using Hyperion , 2016 .

[67]  Gong Lin,et al.  A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements , 2016 .

[68]  R. Ma,et al.  Investigation of chlorophyll‐a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China , 2005 .

[69]  K. Ruddick,et al.  Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8 , 2015 .

[70]  Deyong Sun,et al.  Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[71]  Ronghua Ma,et al.  MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. , 2017, Water research.

[72]  K. Ruddick,et al.  Seaborne measurements of near infrared water‐leaving reflectance: The similarity spectrum for turbid waters , 2006 .