The FDR-Linking Theorem.

This paper introduces the \texttt{FDR-linking} theorem, a novel technique for understanding \textit{non-asymptotic} FDR control of the Benjamini--Hochberg (BH) procedure under arbitrary dependence of the $p$-values. This theorem offers a principled and flexible approach to linking all $p$-values and the null $p$-values from the FDR control perspective, suggesting a profound implication that, to a large extent, the FDR of the BH procedure relies mostly on the null $p$-values. To illustrate the use of this theorem, we propose a new type of dependence only concerning the null $p$-values, which, while strictly \textit{relaxing} the state-of-the-art PRDS dependence (Benjamini and Yekutieli, 2001), ensures the FDR of the BH procedure below a level that is independent of the number of hypotheses. This level is, furthermore, shown to be optimal under this new dependence structure. Next, we present a concept referred to as \textit{FDR consistency} that is weaker but more amenable than FDR control, and the \texttt{FDR-linking} theorem shows that FDR consistency is completely determined by the joint distribution of the null $p$-values, thereby reducing the analysis of this new concept to the global null case. Finally, this theorem is used to obtain a sharp FDR bound under arbitrary dependence, which improves the $\log$-correction FDR bound (Benjamini and Yekutieli, 2001) in certain regimes.

[1]  W. R. Buckland Statistical Papers , 1971, Nature.

[2]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[3]  Aaditya Ramdas,et al.  Towards "simultaneous selective inference": post-hoc bounds on the false discovery proportion , 2018, 1803.06790.

[4]  Jianqing Fan,et al.  Estimation of the false discovery proportion with unknown dependence , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[5]  A. Owen Variance of the number of false discoveries , 2005 .

[6]  Michael I. Jordan,et al.  A unified treatment of multiple testing with prior knowledge using the p-filter , 2017, The Annals of Statistics.

[7]  Aaditya Ramdas,et al.  The p‐filter: multilayer false discovery rate control for grouped hypotheses , 2017 .

[8]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Wenge Guo,et al.  On control of the false discovery rate under no assumption of dependency , 2008 .

[10]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[11]  John D. Storey,et al.  Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .

[12]  Statistica Sinica , .

[13]  John D. Storey A direct approach to false discovery rates , 2002 .

[14]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[15]  Terence P Speed,et al.  SOME STEP-DOWN PROCEDURES CONTROLLING THE FALSE DISCOVERY RATE UNDER DEPENDENCE. , 2008, Statistica Sinica.

[16]  Etienne Roquain,et al.  Exact calculations for false discovery proportion with application to least favorable configurations , 2010, 1002.2845.

[17]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[18]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[19]  Y. Benjamini Discovering the false discovery rate , 2010 .

[20]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[22]  J. A. Ferreira,et al.  On the Benjamini-Hochberg method , 2006, math/0611265.

[23]  Wenguang Sun,et al.  Large‐scale multiple testing under dependence , 2009 .

[24]  Y. Benjamini,et al.  A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence , 1999 .

[25]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[26]  G. Hommel Tests of the overall hypothesis for arbitrary dependence structures , 1983 .

[27]  A. Tamhane,et al.  A generalized step‐up‐down multiple test procedure , 1998 .

[28]  Ester Samuel-Cahn,et al.  Is the Simes improved Bonferroni procedure conservative , 1996 .

[29]  Helmut Finner,et al.  On the Simes test under dependence , 2017 .

[30]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[31]  A. Farcomeni Some Results on the Control of the False Discovery Rate under Dependence , 2007 .

[32]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[33]  S. Karlin,et al.  Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions , 1980 .

[34]  P. Hall,et al.  Robustness of multiple testing procedures against dependence , 2009, 0903.0464.

[35]  M. J. van der Laan,et al.  Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives , 2004, Statistical applications in genetics and molecular biology.

[36]  Jianqing Fan,et al.  Journal of the American Statistical Association Estimating False Discovery Proportion under Arbitrary Covariance Dependence Estimating False Discovery Proportion under Arbitrary Covariance Dependence , 2022 .

[37]  L. Wasserman,et al.  A stochastic process approach to false discovery control , 2004, math/0406519.

[38]  S. Sarkar,et al.  The Simes Method for Multiple Hypothesis Testing with Positively Dependent Test Statistics , 1997 .

[39]  B. Efron Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates , 2010, Journal of the American Statistical Association.

[40]  P. Heesen,et al.  Inequalities for the false discovery rate (FDR) under dependence , 2014, 1410.8290.

[41]  Einar Andreas Rødland,et al.  Simes' procedure is ‘valid on average’ , 2006 .

[42]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[43]  T. Dickhaus,et al.  Dependency and false discovery rate: Asymptotics , 2007, 0710.3171.

[44]  S. Sarkar Some Results on False Discovery Rate in Stepwise multiple testing procedures , 2002 .

[45]  A. Reiner-Benaim FDR Control by the BH Procedure for Two‐Sided Correlated Tests with Implications to Gene Expression Data Analysis , 2007, Biometrical journal. Biometrische Zeitschrift.

[46]  Samuel Karlin,et al.  Total Positivity Properties of Absolute Value Multinormal Variables with Applications to Confidence Interval Estimates and Related Probabilistic Inequalities , 1981 .

[47]  Wenge Guo,et al.  Further results on controlling the false discovery proportion , 2014, 1406.0266.

[48]  Q. Shao,et al.  False Discovery Control for Pairwise Comparisons - An Asymptotic Solution to Williams, Jones and Tukey's Conjecture , 2017, 1712.03305.

[49]  Albert D. Shieh,et al.  Statistical Applications in Genetics and Molecular Biology , 2010 .

[50]  H. Finner,et al.  On the False Discovery Rate and Expected Type I Errors , 2001 .

[51]  Xihong Lin,et al.  The effect of correlation in false discovery rate estimation. , 2011, Biometrika.

[52]  Chloé Friguet,et al.  A Factor Model Approach to Multiple Testing Under Dependence , 2009 .

[53]  S. Sarkar Some probability inequalities for ordered $\rm MTP\sb 2$ random variables: a proof of the Simes conjecture , 1998 .

[54]  L. Wasserman,et al.  False discovery control with p-value weighting , 2006 .

[55]  Weijie J. Su,et al.  SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION. , 2014, The annals of applied statistics.

[56]  W. Wu,et al.  On false discovery control under dependence , 2008, 0803.1971.

[57]  Michael Wolf,et al.  Control of generalized error rates in multiple testing , 2007, 0710.2258.

[58]  Qiang Sun,et al.  FarmTest: Factor-Adjusted Robust Multiple Testing With Approximate False Discovery Control , 2017, Journal of the American Statistical Association.

[59]  Cornetto Test , 2020, ACM Transactions on Algorithms.

[60]  Joseph P. Romano,et al.  Control of the false discovery rate under dependence using the bootstrap and subsampling , 2008 .

[61]  Yosef Hochberg,et al.  Extensions of multiple testing procedures based on Simes' test , 1995 .

[62]  Daniel Yekutieli False discovery rate control for non-positively regression dependent test statistics , 2008 .

[63]  Cynthia Dwork,et al.  Differentially Private False Discovery Rate Control , 2018, J. Priv. Confidentiality.