Alley coppice—a new system with ancient roots

ContextCurrent production from natural forests will not satisfy future world demand for timber and fuel wood, and new land management options are required.AimsWe explore an innovative production system that combines the production of short rotation coppice in wide alleys with the production of high-value trees on narrow strips of land; it is an alternative form of alley cropping which we propose to call ‘alley coppice’. The aim is to describe this alley coppice system and to illustrate its potential for producing two diverse products, namely high-value timber and energy wood on the same land unit.MethodsBased on a comprehensive literature review, we compare the advantages and disadvantages of the alley coppice system and contrast the features with well-known existing or past systems of biomass and wood production.ResultsWe describe and discuss the basic aspects of alley coppice, its design and dynamics, the processes of competition and facilitation, issues of ecology, and areas that are open for future research.ConclusionBased on existing knowledge, a solid foundation for the implementation of alley coppice on suitable land is presented, and the high potential of this system could be shown.

[1]  É. Malézieux,et al.  Mixing plant species in cropping systems: concepts, tools and models. A review , 2011, Agronomy for Sustainable Development.

[2]  C. Dupraz,et al.  Simple models for light competition within agroforestry discontinuous tree stands: are leaf clumpiness and light interception by woody parts relevant factors? , 2011, Agroforestry Systems.

[3]  D. Forrester,et al.  Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. , 2010 .

[4]  C. Dupraz,et al.  Unusual Fine Root Distributions of Two Deciduous Tree Species in Southern France: What Consequences for Modelling of Tree Root Dynamics? , 2006, Plant and Soil.

[5]  P. Balandier A method to evaluate needs and efficiency of formative pruning of fast-growing broad-leaved trees and results of an annual pruning. , 1997 .

[6]  Francesco Pelleri,et al.  The modern silviculture of Juglans regia L: A literature review , 2009 .

[7]  Wayne A. Geyer,et al.  Biomass production in the Central Great Plains USA under various coppice regimes , 2006 .

[8]  Gero Becker,et al.  Harvesting of short rotation coppice - harvesting trials with a cut and storage system in Germany. , 2012 .

[9]  S. Anderson,et al.  The impact of economic, social and political factors on the ecology of small English woodlands: a case study of the ancient woods in South Yorkshire, England. , 2000 .

[10]  Robin Matthews,et al.  Low External Input Technologies for Livelihood Improvement in Subsistence Agriculture , 2004 .

[11]  M. Ashton,et al.  The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica , 2011 .

[12]  B. Kang Alley cropping—soil productivity and nutrient recycling , 1997 .

[13]  H. Setälä Ecosystem services and biodiversity in Europe , 2009 .

[14]  P. Burgess,et al.  Farmer Perceptions of Silvoarable Systems in Seven European Countries , 2009 .

[15]  J. Sumberg,et al.  Studies withGliricidia sepium for crop/livestock production systems in West Africa , 1988, Agroforestry Systems.

[16]  P. West Growing Plantation Forests , 2010, Springer International Publishing.

[17]  Markus Fischer,et al.  More diverse plant communities have higher functioning over time due to turnover in complementary dominant species , 2011, Proceedings of the National Academy of Sciences.

[18]  K. E. Giller,et al.  Testing the safety-net role of hedgerow tree roots by 15N placement at different soil depths , 2004, Agroforestry Systems.

[19]  L. Rytter Nutrient content in stems of hybrid aspen as affected by tree age and tree size, and nutrient removal with harvest. , 2002 .

[20]  T. Benton,et al.  Farmland biodiversity: is habitat heterogeneity the key? , 2003 .

[21]  S. David What do farmers think? Farmer evaluations of hedgerow intercropping under semi-arid conditions , 1995, Agroforestry Systems.

[22]  Paul J. Burgess,et al.  Modeling environmental benefits of silvoarable agroforestry in Europe , 2007 .

[23]  Jacopo Bacenetti,et al.  Economic, energetic and environmental impact in short rotation coppice harvesting operations. , 2012 .

[24]  C. Ong,et al.  Can the ecosystem mimic hypotheses be applied to farms in African savannahs? , 1999, Agroforestry Systems.

[25]  Naeem,et al.  Ecosystems and Human Well-Being: Biodiversity Synthesis , 2005 .

[26]  Theo Verwijst,et al.  Biomass estimation procedures in short rotation forestry , 1999 .

[27]  J. Soussana,et al.  Crop and pasture response to climate change , 2007, Proceedings of the National Academy of Sciences.

[28]  J. Groot,et al.  Root distribution of trees and crops: competition and/or complementarity , 1996 .

[29]  R. Hüttl,et al.  Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe , 2009 .

[30]  P. Hari,et al.  The human footprint in the carbon cycle of temperate and boreal forests , 2007, Nature.

[31]  W. M. Dawson,et al.  Yield responses of willow (Salix) grown in mixtures in short rotation coppice (SRC) , 2001 .

[32]  David Gouache,et al.  Why are wheat yields stagnating in Europe? A comprehensive data analysis for France , 2010 .

[33]  Silong Wang,et al.  Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site , 2009 .

[34]  J. Parrotta,et al.  Restoration of Tropical Moist Forests on Bauxite‐Mined Lands in the Brazilian Amazon , 1999 .

[35]  Florencia Montagnini,et al.  Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica , 2006 .

[36]  J. Vandermeer,et al.  Synergies between Agricultural Intensification and Climate Change Could Create Surprising Vulnerabilities for Crops , 2008 .

[37]  H. E. Garrett,et al.  Agroforestry practice and policy in the United States of America , 1997 .

[38]  D. C. Malcolm,et al.  The ecology of mixed-species stands of trees. , 1992 .

[39]  K. Schwärzel,et al.  Wasserhaushalt von Kurzumtriebsplantagen , 2009 .

[40]  L. Pari,et al.  Energy biomass from the low-investment fully mechanized thinning of hardwood plantations , 2012 .

[41]  Christian Dupraz,et al.  Agroforesterie, des arbres et des cultures , 2008 .

[42]  E. Luedeling,et al.  Carbon sequestration potential of agroforestry in Africa , 2011 .

[43]  C. Messier,et al.  Managing Forests as Complex Adaptive Systems , 2013 .

[44]  M. R. Mosquera-Losada,et al.  Agroforestry in Europe , 2009 .

[45]  A. Hottinger [A historical study]. , 1962, Annales paediatrici. International review of pediatrics.

[46]  M. Kaonga Agroforestry for Biodiversity and Ecosystem Services - Science and Practice , 2012 .

[47]  M. Ashton,et al.  Restoration pathways for rain forest in southwest Sri Lanka: a review of concepts and models , 2001 .

[48]  A. Cowie,et al.  Carbon allocation in a mixed-species plantation of 'Eucalyptus globulus' and 'Acacia mearnsii' , 2006 .

[49]  R. Unseld Kombinierter Anbau von Wertholz‐ und Kurzumtriebsbäumenumen , 2009 .

[50]  M. Kelty The role of species mixtures in plantation forestry , 2006 .

[51]  C. Ong,et al.  Tree-Crop Interactions: A Physiological Approach , 1996 .

[52]  Paul J. Burgess,et al.  A system identification approach for developing and parameterising an agroforestry system model under constrained availability of data , 2011, Environ. Model. Softw..

[53]  M. Tomé,et al.  Models of potential height and diameter for Eucalyptus globulus in Portugal , 2003 .

[54]  S. Jose,et al.  Defining competition vectors in a temperate alley cropping system in the midwestern USA: 1. Production physiology , 2000, Agroforestry Systems.

[55]  C. Adu-Anning,et al.  Ensuring sustainable harvesting of wood: impact of biomass harvesting on the nutrient stores of teak woodlot stand in the Sudan Savanna. , 2001 .

[56]  B. Lin Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change , 2011 .

[57]  E. Bonari,et al.  Water requirements of poplar and willow vegetation filters grown in lysimeter under Mediterranean conditions: Results of the second rotation , 2009 .

[58]  J. McAdam,et al.  Agroforestry in Europe : current status and future prospects , 2009 .

[59]  Ralph D. Nyland,et al.  Silviculture: Concepts and Applications , 1996 .

[60]  B. Kang,et al.  Alley cropping maize (Zea mays L.) and leucaena (Leucaena leucocephala Lam) in southern Nigeria , 1981, Plant and Soil.

[61]  C. D. Whitesell,et al.  Growth, Development, and Yield in Pure and Mixed Stands of Eucalyptus and Albizia , 1997, Forest Science.

[62]  D. Freese,et al.  Carbon Sequestration in European Agroforestry Systems , 2011 .

[63]  D. Howlett,et al.  Agroforestry in the management of sloping lands in Asia and the Pacific , 2004, Agroforestry Systems.

[64]  Jonathan P. Sheppard,et al.  Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone , 2013 .

[65]  Y. Serengil,et al.  Managing forests as complex adaptive systems: building resilience to the challenge of global change , 2014 .

[66]  J. Vanclay Managing water use from forest plantations , 2009 .

[67]  D. J. Pilbeam,et al.  Silvoarable Systems in Europe – Past, Present and Future Prospects , 2006, Agroforestry Systems.

[68]  H. Spiecker,et al.  Impact of artificial pruning on growth and secondary shoot development of wild cherry (Prunus avium L.) , 2011 .

[69]  A. Tansley,et al.  THE WOODLANDS OF ENGLAND , 1910 .

[70]  Heinrich Spiecker,et al.  Valuable Broadleaved Forests in Europe , 2009 .

[71]  J. Singh,et al.  Silviculture of dry deciduous forests, India. , 2011 .

[72]  D. Spring,et al.  Optimal management of a forested catchment providing timber and carbon sequestration benefits: Climate change effects , 2005 .

[73]  J. Ayars,et al.  Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory , 1999 .

[74]  L. K. Jha Advances in Agroforestry , 2012 .

[75]  S. Jose,et al.  Interspecific interactions in temperate agroforestry , 2004, Agroforestry Systems.

[76]  C. Böhm,et al.  Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review , 2012, Agroforestry Systems.

[77]  E. Bonari,et al.  Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. , 2008, Bioresource technology.

[78]  A. Bolte,et al.  High value of short rotation coppice plantations for phytodiversity in rural landscapes , 2012 .

[79]  Paul J. Burgess,et al.  Development and application of bio-economic modelling to compare silvoarable, arable and forestry systems in three European countries , 2007 .

[80]  A. Gordon,et al.  Temperate Agroforestry Systems , 1997 .

[81]  Paul J. Burgess,et al.  Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe , 2010 .

[82]  A. Metay,et al.  Assessing Light Competition for Cereal Production in Temperate Agroforestry Systems using Experimentation and Crop Modelling , 2013 .

[83]  C. Dupraz Les associations d'arbres et de cultures intercalaires annuelles sous climat tempéré , 1994 .

[84]  Zhiyong Li,et al.  Carbon storage capacity of monoculture and mixed-species plantations in subtropical China , 2013 .

[85]  D. Chira,et al.  First year development of poplar clones in biomass short rotation coppiced experimental cultures , 2010 .

[86]  N. Magagnotti,et al.  Mechanized thinning of walnut plantations established on ex-arable land , 2011, Agroforestry Systems.

[87]  S. Jose,et al.  Competition for water in a pecan (Carya illinoensis K. Koch) – cotton (Gossypium hirsutum L.) alley cropping system in the southern United States , 2004, Agroforestry Systems.

[88]  Jurij Diaci Nature-based forestry in Central Europe: alternatives to industrial forestry and strict preservation. , 2006 .

[89]  J. Parrotta,et al.  Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico , 1999 .

[90]  P. Stewart Coppice with standards: a system for the future. , 1980 .

[91]  B. Côté,et al.  Tree growth and nutrient cycling in dense plantings of hybrid poplar and black alder , 1987 .

[92]  J. Hopkins,et al.  Ecological change in British broadleaved woodland since 1947 , 2007 .

[93]  Donald G. Barceloux Black Locust (Robinia pseudoacacia L.) , 2008 .

[94]  A. Cowie,et al.  On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii , 2005 .

[95]  Y. Nouvellon,et al.  Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo , 2013 .

[96]  Martin S. Wolfe,et al.  Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? , 2012, Renewable Agriculture and Food Systems.

[97]  G. Peterken,et al.  Silviculture of Broadleaved Woodland. , 1984 .

[98]  S. Pryor The silviculture and yield of wild cherry. , 1988 .

[99]  Pradeep Kumar Nair,et al.  Safety-net role of tree roots: evidence from a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States , 2004 .

[100]  A. Rigueiro-Rodríguez,et al.  Agroforestry Systems in Europe: Productive, Ecological and Social Perspectives , 2009 .

[101]  Paul J. Burgess,et al.  Methodological approach for the assessment of environmental effects of agroforestry at the landscape scale , 2007 .

[102]  C. Ong,et al.  Biophysical interactions in tropical agroforestry systems , 2004, Agroforestry Systems.

[103]  Garry D. Peterson,et al.  Response diversity, ecosystem change, and resilience , 2003 .

[104]  Gail Taylor,et al.  Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. , 2008, The New phytologist.

[105]  E. Bonari,et al.  Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy , 2008 .

[106]  M. van Noordwijk,et al.  WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems , 2004, Agroforestry Systems.

[107]  W. Konold,et al.  Anbau und Nutzung von Bäumen auf Landwirtschaftlichen Flächen , 2009 .

[108]  Unexpected lack of influence of tree rows on the dynamics of wheat aphids and their natural enemies in a temperate agroforestry system , 2012, Agroforestry Systems.

[109]  P. Burgess,et al.  Yield-SAFE: A parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems , 2007 .

[110]  Christian Dupraz,et al.  Growth of widely spaced trees. A case study from young agroforestry plantations in France , 1999 .

[111]  Paul J. Burgess,et al.  Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe , 2007 .

[112]  J. Gershenzon,et al.  Where will the wood come from? Plantation forests and the role of biotechnology. , 2002, Trends in biotechnology.

[113]  T. Verwijst,et al.  Non-destructive estimation of biomass of Salix dasyclados , 1992 .

[114]  C. Dupraz,et al.  Temperate agroforestry: the European way , 1997 .

[115]  G. D. Hogan,et al.  Establishment-year height growth in hybrid poplars; relations with longer-term growth , 1996, New Forests.

[116]  B. Douthwaite,et al.  The adoption of alley farming and Mucuna: lessons for research, development and extension , 2002, Agroforestry Systems.

[117]  D. Baldocchi,et al.  The human footprint in the carbon cycle of temperate and boreal forests − , 2008 .

[118]  R. Ceulemans,et al.  Dynamics of biomass production in a poplar coppice culture over three rotations (11 years) , 2008 .

[119]  P. J. Burgess,et al.  Farm-SAFE: the process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics , 2011, Agroforestry Systems.

[120]  Oliver Brauner,et al.  Animal diversity on short-rotation coppices - a review. , 2009 .

[121]  Jonathan P. Sheppard,et al.  Influence of Different Tillage Systems and Weed Treatments in the Establishment Year on the Final Biomass Production of Short Rotation Coppice Poplar , 2013 .

[122]  H. Bartelink A growth model for mixed forest stands , 2000 .

[123]  R. Mosandl,et al.  Silviculture in the Tropics. , 2011 .

[124]  Maurizio Sabatti,et al.  Comparing hybrid Populus clones for SRF across northern Italy after two biennial rotations: Survival, growth and yield , 2011 .

[125]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[126]  R. Cramb,et al.  Adoption and Maintenance of Contour Bunds and Hedgerows in a Dynamic Environment , 2002 .

[127]  J. Dhôte,et al.  Development of total aboveground volume equations for seven important forest tree species in France , 2006 .

[128]  R. Mead,et al.  The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping , 1980, Experimental Agriculture.

[129]  G. Hemery GROWING WALNUT IN MIXED STANDS , 2001 .

[130]  F. J. Hamm Leitsätze für den Mittelwaldbetrieb , 1900, European Journal of Forest Research.

[131]  T. Volk,et al.  Biophysical interactions in a short rotation willow intercropping system in southern Ontario, Canada , 2009 .

[132]  M. Balzarini,et al.  Wild cherry tree (Prunus avium L.) growth in pure and mixed plantations in South America , 2013 .

[133]  W. Konold,et al.  The "Mittelwald" - an agroforestry system between rigid sustainability and creative options. A historical study. , 2010 .