"Batch" kinetics in flow: online IR analysis and continuous control.

Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data.

[1]  R. J. Boyd,et al.  A density functional theory study of the mechanism of the Paal–Knorr pyrrole synthesis , 2007 .

[2]  Klavs F. Jensen,et al.  Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis , 2012 .

[3]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[4]  Kevin D. Nagy,et al.  Mixing and Dispersion in Small-Scale Flow Systems , 2012 .

[5]  H. Löwe,et al.  Chemistry in microstructured reactors. , 2004, Angewandte Chemie.

[6]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[7]  K. Jensen,et al.  Automation in Microreactor Systems , 2013 .

[8]  Jonathan P. McMullen,et al.  Rapid Determination of Reaction Kinetics with an Automated Microfluidic System , 2011 .

[9]  Fernando E. Valera,et al.  Der Fluss ist das Ding …︁ oder ist er es? Ein Vergleich homogener Reaktionen in Reaktionskolben und Durchflussreaktoren , 2010 .

[10]  L. Knorr Einwirkung des Diacetbernsteinsäureesters auf Ammoniak und primäre Aminbasen , 1885 .

[11]  E. Corey,et al.  NAME REACTIONS IN HETEROCYCLIC CHEMISTRY , 2009 .

[12]  Holger Löwe,et al.  Chemie in Mikrostrukturreaktoren , 2004 .

[13]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[14]  Klavs F. Jensen,et al.  Silicon-Based Microchemical Systems: Characteristics and Applications , 2006 .

[15]  W. Valentine,et al.  Intermediates in the Paal-Knorr synthesis of pyrroles. 4-Oxoaldehydes. , 1995, Chemical research in toxicology.

[16]  D. Anthony,et al.  Intermediates in the Paal-Knorr synthesis of pyrroles , 1991 .

[17]  Klavs F. Jensen,et al.  Aminolysis of Epoxides in a Microreactor System: A Continuous Flow Approach to β-Amino Alcohols , 2010 .

[18]  Jonathan P. McMullen,et al.  An Automated Microfluidic System for Online Optimization in Chemical Synthesis , 2010 .

[19]  K. Jensen Microreaction engineering * is small better? , 2001 .

[20]  C. Paal Synthese von Thiophen- und Pyrrolderivaten , 1885 .

[21]  J. Elguero,et al.  Tailor-made naphthyridines: Self-assembling multiple hydrogen-bonded supramolecular architectures from dimer to helix , 2007 .

[22]  Paul Watts,et al.  Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. , 2011, Journal of the American Chemical Society.

[23]  Alan Armstrong,et al.  The flow's the thing..or is it? Assessing the merits of homogeneous reactions in flask and flow. , 2010, Angewandte Chemie.

[24]  Volker Hessel,et al.  Organic Synthesis with Microstructured Reactors , 2005 .