Nonlinear harmonic vibrations of laminate plates with viscoelastic layers using refined zig-zag theory. Part 1 – theoretical background

[1]  M. Filippi,et al.  Layer-wise dynamic analysis of a beam with global and local viscoelastic contributions using an FE/Laplace transform approach , 2022, Acta Mechanica.

[2]  R. Lewandowski Nonlinear steady state vibrations of beams made of the fractional Zener material using an exponential version of the harmonic balance method , 2022, Meccanica.

[3]  F. Ashenai Ghasemi,et al.  Analytical investigation of the refined zigzag theory for electro-magneto vibration response of the viscoelastic FG-GPLRC sandwich microplates , 2022, Mechanics Based Design of Structures and Machines.

[4]  E. Madenci,et al.  Triangular C0 continuous finite elements based on refined zigzag theory {2,2} for free and forced vibration analyses of laminated plates , 2021, Composite Structures.

[5]  Erasmo Carrera,et al.  Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements , 2021 .

[6]  Chung-De Chen,et al.  An analytical solution for vibration in a functionally graded sandwich beam by using the refined zigzag theory , 2021, Acta Mechanica.

[7]  R. Lewandowski,et al.  Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1. Theoretical background , 2021, Composite Structures.

[8]  T. Rabczuk,et al.  A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates , 2021, Composite Structures.

[9]  Timon Rabczuk,et al.  Nonlinear transient vibration of viscoelastic plates: A NURBS-based isogeometric HSDT approach , 2021, Comput. Math. Appl..

[10]  L. Dozio,et al.  Dynamic response of viscoelastic multiple-core sandwich structures , 2021 .

[11]  M. Heydari,et al.  A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement , 2020, Mechanics Research Communications.

[12]  R. Lewandowski,et al.  Dynamic characteristics of multi-layered, viscoelastic beams using the refined zig-zag theory , 2020 .

[13]  Guozhong Zhao,et al.  A layerwise finite element formulation for vibration and damping analysis of sandwich plate with moderately thick viscoelastic core , 2020, Mechanics of Advanced Materials and Structures.

[14]  Ning Guo,et al.  Uncertainty propagation of frequency response of viscoelastic damping structures using a modified high-dimensional adaptive sparse grid collocation method , 2020, Mechanics of Advanced Materials and Structures.

[15]  F. Chu,et al.  TheFinite Element Modeling and Experimental Study of Sandwich Plates with Frequency-Dependent Viscoelastic Material Model , 2020, Materials.

[16]  Abhay Gupta,et al.  Improved damping in sandwich beams through the inclusion of dispersed graphite particles within the viscoelastic core , 2020 .

[17]  Huili Guo,et al.  An analytical study of transient thermo-viscoelastic responses of viscoelastic laminated sandwich composite structure for vibration control , 2020, Mechanics of Advanced Materials and Structures.

[18]  R. Lewandowski,et al.  Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature , 2020 .

[19]  F. Cortés,et al.  Dynamic analysis of plates with thick unconstrained layer damping , 2019 .

[20]  R. Lewandowski,et al.  Analysis of the Primary and Secondary Resonances of Viscoelastic Beams Made of Zener Material , 2019, Journal of Computational and Nonlinear Dynamics.

[21]  C. Ray,et al.  An improved isoparametric quadratic element based on refined zigzag theory to compute interlaminar stresses of multilayered anisotropic plates , 2019, International Journal for Numerical Methods in Engineering.

[22]  M. Di Sciuva,et al.  Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory , 2019, Journal of Sandwich Structures & Materials.

[23]  Roman Lewandowski,et al.  Influence of Temperature on the Dynamic Characteristics of Structures with Viscoelastic Dampers , 2019, Journal of Structural Engineering.

[24]  Reza Kolahchi,et al.  A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment , 2018, Engineering with Computers.

[25]  Mario Di Paola,et al.  The finite element implementation of 3D fractional viscoelastic constitutive models , 2018, Finite Elements in Analysis and Design.

[26]  H. Eipakchi,et al.  An analytical approach for free vibrations analysis of viscoelastic circular and annular plates using FSDT , 2018, Mechanics of Advanced Materials and Structures.

[27]  Mojtaba Sadighi,et al.  Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory , 2017 .

[28]  H. Eipakchi,et al.  An analytical procedure for dynamic response determination of a viscoelastic beam with moderately large deflection using first-order shear deformation theory , 2017 .

[29]  G. Alotta,et al.  On the behavior of a three-dimensional fractional viscoelastic constitutive model , 2017 .

[30]  R. Lewandowski,et al.  Steady-state non-linear vibrations of plates using Zener material model with fractional derivative , 2017 .

[31]  R. Kolahchi,et al.  Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods , 2017 .

[32]  Liz G. Nallim,et al.  A hierarchical finite element for composite laminated beams using a refined zigzag theory , 2017 .

[33]  Ugo Icardi,et al.  Assessment of recent zig-zag theories for laminated and sandwich structures , 2016 .

[34]  Alexander Tessler,et al.  Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle , 2015 .

[35]  R. Lewandowski,et al.  Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model , 2015 .

[36]  E. Carrera,et al.  Vibration Modeling of Multilayer Composite Structures with Viscoelastic Layers , 2015 .

[37]  A. Baz,et al.  Topology optimization of unconstrained damping treatments for plates , 2014 .

[38]  Marco Gherlone,et al.  Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories , 2013 .

[39]  Yoshihiro Narita,et al.  Frequency maximization of laminated sandwich plates under general boundary conditions using layerwise optimization method with refined zigzag theory , 2013 .

[40]  Eugenio Oñate,et al.  A four‐noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory , 2013 .

[41]  Sergio Oller,et al.  Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory , 2012 .

[42]  H. Hilton Generalized Fractional Derivative Anisotropic Viscoelastic Characterization , 2012, Materials.

[43]  El Mostafa Daya,et al.  Review: Complex modes based numerical analysis of viscoelastic sandwich plates vibrations , 2011 .

[44]  Marco Gherlone,et al.  A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics , 2010 .

[45]  Dimitris A. Saravanos,et al.  High‐order layerwise finite element for the damped free‐vibration response of thick composite and sandwich composite plates , 2009 .

[46]  F. Cortés,et al.  Homogenised finite element for transient dynamic analysis of unconstrained layer damping beams involving fractional derivative models , 2007 .

[47]  R. A. S. Moreira,et al.  A layerwise model for thin soft core sandwich plates , 2006 .

[48]  J. R. Banerjee,et al.  Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam , 2005 .

[49]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .

[50]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[51]  T. T. Soong,et al.  Supplemental energy dissipation: state-of-the-art and state-of-the- practice , 2002 .

[52]  A. Lumsdaine,et al.  SHAPE OPTIMIZATION OF UNCONSTRAINED VISCOELASTIC LAYERS USING CONTINUUM FINITE ELEMENTS , 1998 .

[53]  Shih-Wei Kung,et al.  Vibration analysis of beams with multiple constrained layer damping patches , 1998 .

[54]  Roman Lewandowski,et al.  Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .

[55]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[56]  M. Di Sciuva,et al.  A general quadrilateral multilayered plate element with continuous interlaminar stresses , 1993 .

[57]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[58]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[59]  M. D. Sciuva,et al.  BENDING, VIBRATION AND BUCKLING OF SIMPLY SUPPORTED THICK MULTILAYERED ORTHOTROPIC PLATES: AN EVALUATION OF A NEW DISPLACEMENT MODEL , 1986 .

[60]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[61]  R. Plunkett,et al.  Length Optimization for Constrained Viscoelastic Layer Damping , 1970 .

[62]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[63]  R. Ditaranto Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams , 1965 .

[64]  D. Maiti,et al.  Geometrically nonlinear dynamic analysis of laminated composite plate using a nonpolynomial shear deformation theory , 2021 .

[65]  A. Tessler,et al.  A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory , 2021 .

[66]  Luigi Iurlaro,et al.  Experimental assessment of the Refined Zigzag Theory for the static bending analysis of sandwich beams , 2018 .

[67]  Domenico Mundo,et al.  Dynamic response of laminated structures using a Refined Zigzag Theory shell element , 2017 .

[68]  Z. Pawlak,et al.  Influence of temperature on dynamic characteristics of structures with VE dampers , 2016 .

[69]  M.Kh. Elmarghany,et al.  A refined zigzag nonlinear first-order shear deformation theory of composite laminated plates , 2008 .

[70]  Marco Di Sciuva,et al.  Multilayered anisotropic plate models with continuous interlaminar stresses , 1992 .

[71]  Marco Di Sciuva,et al.  Development of an anisotropic, multilayered, shear-deformable rectangular plate element , 1985 .