Entangled photon-added coherent states

We study the degree of entanglement of arbitrary superpositions of m, n photon-added coherent states (PACS) $$\mathinner {|{\psi }\rangle } \propto u \mathinner {|{{\alpha },m}\rangle }\mathinner {|{{\beta },n }\rangle }+ v \mathinner {|{{\beta },n}\rangle }\mathinner {|{{\alpha },m}\rangle }$$|ψ⟩∝u|α,m⟩|β,n⟩+v|β,n⟩|α,m⟩ using the concurrence and obtain the general conditions for maximal entanglement. We show that photon addition process can be identified as an entanglement enhancer operation for superpositions of coherent states (SCS). Specifically for the known bipartite positive SCS: $$\mathinner {|{\psi }\rangle } \propto \mathinner {|{\alpha }\rangle }_a\mathinner {|{-\alpha }\rangle }_b + \mathinner {|{-\alpha }\rangle }_a\mathinner {|{\alpha }\rangle }_b $$|ψ⟩∝|α⟩a|-α⟩b+|-α⟩a|α⟩b whose entanglement tends to zero for $$\alpha \rightarrow 0$$α→0, can be maximal if al least one photon is added in a subsystem. A full family of maximally entangled PACS is also presented. We also analyzed the decoherence effects in the entangled PACS induced by a simple depolarizing channel . We find that robustness against depolarization is increased by adding photons to the coherent states of the superposition. We obtain the dependence of the critical depolarization $$p_{\text {crit}}$$pcrit for null entanglement as a function of $$m,n, \alpha $$m,n,α and $$\beta $$β.

[1]  I. Walmsley,et al.  Directly comparing entanglement-enhancing non-Gaussian operations , 2015 .

[2]  Seung-Woo Lee,et al.  Generation of hybrid entanglement of light , 2014, Nature Photonics.

[3]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[4]  Sanders,et al.  Entangled coherent states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Radim Filip,et al.  Continuous variable quantum key distribution with modulated entangled states , 2011, Nature Communications.

[6]  G. Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state , 1991 .

[7]  J. Audretsch Entangled Systems: New Directions in Quantum Physics , 2007 .

[8]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[9]  H. Vasconcelos,et al.  Polarization and entanglement of photon-added coherent states , 2013 .

[10]  B. Sanders Review of entangled coherent states , 2011, 1112.1778.

[11]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[12]  Rubens Viana Ramos,et al.  Quantum communication with photon-added coherent states , 2013, Quantum Inf. Process..

[13]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[14]  Masahide Sasaki,et al.  Optical continuous-variable qubit. , 2010 .

[15]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[16]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[17]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[18]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[19]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[21]  A. Holevo,et al.  Quantum channels and their entropic characteristics , 2012, Reports on progress in physics. Physical Society.

[22]  W. Wootters,et al.  Entangled Rings , 2000, quant-ph/0009041.

[23]  Xian-Feng Chen,et al.  Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition , 2014, 1411.7500.

[24]  Jeffrey H. Shapiro,et al.  Enhancing quantum entanglement by photon addition and subtraction , 2012 .