A Successful Practical Experience with Dedicated Geostationary Operational Environmental Satellites GOES-10 and -12 Supporting Brazil

AbstractThis paper summarizes the successful use of Geostationary Operational Environmental Satellite-10 (GOES-10) and -12 (GOES-12), mainly beyond their retirement as operational satellites in the United States, in support of meteorological activities in South America (SA). These satellites were maneuvered by the National Oceanic and Atmospheric Administration (NOAA) to approximately 60°W, enabling other countries in Central and South America to benefit from their ongoing measurements. The extended usefulness of GOES-10 and -12 was only possible as a result of a new image geolocalization system developed by NOAA for correcting image distortions and evaluated in collaboration with the Brazilian National Institute for Space Research. The extension allowed GOES-10 and -12 to monitor SA for an additional 7 years proving the efficiency of this navigation capability implemented for the first time in the GOES series well beyond the expected satellites’ lifetime. Such successful capability is incorporated in the...

[1]  Fernando Falco Pruski,et al.  COMPARAÇÃO DE PRODUTOS DE RADIAÇÃO SOLAR INCIDENTE À SUPERFÍCIE PARA A AMÉRICA DO SUL , 2010 .

[2]  Nelson Arai,et al.  WIND EXTRACTION USING SATELLITE IMAGES IN CPTEC : NEW VERSION AND EVALUATION WITH WETAMC / LBA AND OPERATIONAL DSA / CPTEC DATA , 2002 .

[3]  Saulo R. Freitas,et al.  Incluindo Funcionalidades no Modelo BRAMS para Simular o Transporte de Cinzas Vulcânicas: Descrição e Análise de Sensibilidade Aplicada ao Evento Eruptivo do Puyehue em 2011 , 2016 .

[4]  Luiz A. T. Machado,et al.  Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation , 2008 .

[5]  W. Paul Menzel,et al.  Visible and infrared spin scan radiometer atmospheric sounder water vapor and wind fields over Amazonia , 1990 .

[6]  Luiz A. T. Machado,et al.  A Severe Storm Warning System based in Radar and Satellite Data , 2009 .

[7]  W. Rossow,et al.  Life Cycle Variations of Mesoscale Convective Systems over the Americas , 1998 .

[8]  Javier Tomasella,et al.  Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins–Araguaia basin in Brazil , 2015 .

[9]  Ashish Kumar,et al.  Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique , 2016, SPIE Asia-Pacific Remote Sensing.

[10]  Weber Andrade Gonçalves,et al.  Regionalization of the GOES-10 retrieval algorithm for tropical South America , 2012 .

[11]  J. Schmetz,et al.  Operational Cloud-Motion Winds from Meteosat Infrared Images , 1993 .

[12]  Jeffrey C. Bailey,et al.  Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities , 2014 .

[13]  Renato Galante Negri,et al.  Estimativa do vento para os baixos níveis utilizando imagens dos canais visível e infravermelho próximo 3.9 µm , 2008 .

[14]  Aline Schneider Falck,et al.  Avaliação de um Modelo Estocástico de Erro Multidimensional Aplicado a Estimativas de Precipitação por Satélite , 2016 .

[15]  Ian Simmonds,et al.  Climate perspective on the large‐scale circulation associated with the transition of the first South Atlantic hurricane , 2009 .

[16]  Luiz A. T. Machado,et al.  Inner convective system cloud-top wind estimation using multichannel infrared satellite images , 2014 .

[17]  Jun Li,et al.  Many uses of the geostationary operational environmental satellite-10 sounder and imager during a high inclination state , 2009 .

[18]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[19]  Timothy J. Schmit,et al.  A satellite‐based estimate of evapotranspiration over Amazonia , 1994 .

[20]  J. Viramonte,et al.  Volcanic ash forecast during the June 2011 Cordón Caulle eruption , 2013, Natural Hazards.

[21]  William L. Smith,et al.  A Nonlinear Physical Retrieval Algorithm—Its Application to the GOES-8/9 Sounder , 1999 .

[22]  H. Laurent,et al.  The Convective System Area Expansion over Amazonia and Its Relationships with Convective System Life Duration and High-Level Wind Divergence , 2004 .

[23]  S. S. Tomita,et al.  The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas. , 2016, Geoscientific model development.

[24]  Marcus Jorge Bottino,et al.  A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery , 2004 .

[25]  Luiz A. T. Machado,et al.  Cloud-to-ground lightning and Mesoscale Convective Systems , 2011 .

[26]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[27]  Christopher A. Davis,et al.  Analysis of Hurricane Catarina (2004) , 2006 .

[28]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[29]  V. Kousky,et al.  Interdiurnal Surface Pressure Variations in Brazil: Their Spatial Distributions, Origins and Effects , 1981 .

[30]  Richard J. Blakeslee,et al.  THE CHUVA PROJECT How Does Convection Vary across Brazil , 2014 .

[31]  C. C. Lautenbacher The Global Earth Observation System of Systems: Science Serving Society , 2006 .

[32]  J. C. Ceballos,et al.  Impact of New Solar Radiation Parameterization in the Eta Model on the Simulation of Summer Climate over South America , 2006 .

[33]  Marcus Jorge Bottino,et al.  Daytime cloud classification over South American region using multispectral GOES-8 imagery , 2015 .

[34]  Ian Simmonds,et al.  New perspectives on the synoptic and mesoscale structure of Hurricane Catarina , 2010 .

[35]  Luiz A. T. Machado,et al.  Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel satellite application , 2009 .

[36]  H. Laurent Wind Extraction from Meteosat Water Vapor Channel Image Data , 1993 .

[37]  Samuel Luna de Abreu,et al.  The state of solar energy resource assessment in Chile , 2010 .

[38]  Hartmut Höller,et al.  Evaluating lightning detection signatures at different technologies: a contribution to GOES-R and MTG , 2015 .

[39]  Steven D. Miller,et al.  The GOES-R Proving Ground: Accelerating User Readiness for the Next-Generation Geostationary Environmental Satellite System , 2012 .

[40]  V. E Koujky,et al.  A climatological study of the tropospheric circulation over the amazon region , 1981 .

[41]  James L. Carr,et al.  XGOHI , Extended GOES High-Inclination Mission for South-American Coverage , 2006 .

[42]  Edward V. Browell,et al.  The Amazon Boundary-Layer Experiment (ABLE 2B) - A meteorological perspective , 1990 .

[43]  Juan Carlos Ceballos Time Series of Daily Mean Solar Irradiance over South America: Some Results of 11 Years of CPTEC GL Model Using GOES Imagery , 2009 .

[44]  Manoel Alonso Gan,et al.  Upper tropospheric cyclonic vortices in the tropical South Atlantic , 1981 .

[45]  Ian Simmonds,et al.  The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change , 2005 .

[46]  R. Scofield,et al.  The Operational GOES Infrared Rainfall Estimation Technique , 1998 .

[47]  Juan Carlos Ceballos,et al.  Outgoing longwave radiation at the top of the atmosphere: preliminary assessment using GOES-8 imager data , 2003 .

[48]  Richard J. Blakeslee,et al.  Diurnal characteristics of lightning flashes detected over the São Paulo lightning mapping array , 2015 .

[49]  Luiz A. T. Machado,et al.  SATELLITE-BASED PRODUCTS FOR MONITORING WEATHER IN SOUTH AMERICA: WINDS AND TRAJECTORIES , 2010 .