Higher spin algebras and large N = 4 holography

: A new family of higher spin algebras that arises upon restricting matrix ex-tensions of shs [ (cid:21) ] is found. We identify coset CFTs realising these symmetry algebras

[1]  S. Datta,et al.  Stringy N = (2 , 2) holography for AdS 3 , 2018 .

[2]  Kevin Ferreira Even spin N=4 holography , 2017 .

[3]  Wei Li,et al.  A holographic dual for string theory on AdS3×S3×S3×S1 , 2017, Journal of High Energy Physics.

[4]  M. Gaberdiel,et al.  Higher spins on AdS3 from the worldsheet , 2017, 1704.08667.

[5]  R. Gopakumar,et al.  BPS spectrum on AdS3×S3×S3×S1 , 2017 .

[6]  A. Sfondrini,et al.  Protected string spectrum in AdS3/CFT2 from worldsheet integrability , 2017, Journal of High Energy Physics.

[7]  M. Gaberdiel,et al.  The so-Kazama-Suzuki models at large level , 2015 .

[8]  C. Peng,et al.  Higher spins in the symmetric orbifold of K3 , 2015, 1504.00926.

[9]  C. Peng,et al.  Extended supersymmetry in AdS3 higher spin theories , 2014, 1408.5144.

[10]  R. Gopakumar,et al.  Higher spins & strings , 2014, 1406.6103.

[11]  D. Tong The holographic dual of AdS3 × S3 × S3 × S1 , 2014, 1402.5135.

[12]  M. Gaberdiel,et al.  The continuous orbifold of N = 2 minimal model holography , 2014 .

[13]  M. Beccaria,et al.  The large N = 4 superconformal W ∞ algebra , 2014 .

[14]  T. Creutzig,et al.  Extended higher spin holography and Grassmannian models , 2013, 1306.0466.

[15]  M. Gaberdiel,et al.  Even spin minimal model holography , 2012, 1211.3113.

[16]  R. Gopakumar,et al.  Minimal model holography , 2012, 1207.6697.

[17]  M. Gaberdiel,et al.  Duality in N = 2 minimal model holography , 2013 .

[18]  R. Gopakumar,et al.  Large N = 4 holography , 2013 .

[19]  Gustavo Lucena Gómez,et al.  Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity , 2012, 1203.5152.

[20]  M. Gaberdiel,et al.  Supersymmetric holography on AdS3 , 2012, 1203.1939.

[21]  M. Gaberdiel,et al.  Limits of minimal models and continuous orbifolds , 2011, 1112.1708.

[22]  T. Creutzig,et al.  Higher spin AdS3 supergravity and its dual CFT , 2011, 1111.2139.

[23]  Thomas Hartman,et al.  Symmetries of holographic minimal models , 2011, 1101.2910.

[24]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[25]  S. Pfenninger,et al.  Asymptotic W-symmetries in three-dimensional higher-spin gauge theories , 2011 .

[26]  S. Pfenninger,et al.  Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.

[27]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[28]  S. Wadia,et al.  Microscopic formulation of black holes in string theory , 2002, hep-th/0203048.

[29]  M. Vasiliev Higher Spin Gauge Theories: Star-Product and AdS Space , 1999, hep-th/9910096.

[30]  J. Boer,et al.  AdS/CFT dualities involving large 2d N=4 superconformal symmetry , 1999, hep-th/9904073.

[31]  M. Vasiliev,et al.  3D Higher-Spin Gauge Theories with Matter , 1998, hep-th/9812242.

[32]  M. Vasiliev,et al.  Higher-spin gauge interactions for massive matter fields in 3D AdS space-time , 1998, hep-th/9806236.

[33]  K. Schoutens,et al.  W symmetry in conformal field theory , 1992, hep-th/9210010.

[34]  M. Vasiliev,et al.  The structure of the super-W∞(λ) algebra , 1991 .

[35]  Kris Thielemans,et al.  A Mathematica package for computing operator product expansions , 1991 .

[36]  R. Blumenhagen,et al.  W-algebras with two and three generators , 1991 .

[37]  M. Vasiliev,et al.  The super-W∞(λ) algebra , 1990 .

[38]  A. Proeyen,et al.  Superconformal algebras in two dimensions with N=4 , 1988 .

[39]  M. Vasiliev Extended Higher‐Spin Superalgebras and Their Realizations in Terms of Quantum Operators , 1988 .