Higher spin algebras and large N = 4 holography
暂无分享,去创建一个
[1] S. Datta,et al. Stringy N = (2 , 2) holography for AdS 3 , 2018 .
[2] Kevin Ferreira. Even spin N=4 holography , 2017 .
[3] Wei Li,et al. A holographic dual for string theory on AdS3×S3×S3×S1 , 2017, Journal of High Energy Physics.
[4] M. Gaberdiel,et al. Higher spins on AdS3 from the worldsheet , 2017, 1704.08667.
[5] R. Gopakumar,et al. BPS spectrum on AdS3×S3×S3×S1 , 2017 .
[6] A. Sfondrini,et al. Protected string spectrum in AdS3/CFT2 from worldsheet integrability , 2017, Journal of High Energy Physics.
[7] M. Gaberdiel,et al. The so-Kazama-Suzuki models at large level , 2015 .
[8] C. Peng,et al. Higher spins in the symmetric orbifold of K3 , 2015, 1504.00926.
[9] C. Peng,et al. Extended supersymmetry in AdS3 higher spin theories , 2014, 1408.5144.
[10] R. Gopakumar,et al. Higher spins & strings , 2014, 1406.6103.
[11] D. Tong. The holographic dual of AdS3 × S3 × S3 × S1 , 2014, 1402.5135.
[12] M. Gaberdiel,et al. The continuous orbifold of N = 2 minimal model holography , 2014 .
[13] M. Beccaria,et al. The large N = 4 superconformal W ∞ algebra , 2014 .
[14] T. Creutzig,et al. Extended higher spin holography and Grassmannian models , 2013, 1306.0466.
[15] M. Gaberdiel,et al. Even spin minimal model holography , 2012, 1211.3113.
[16] R. Gopakumar,et al. Minimal model holography , 2012, 1207.6697.
[17] M. Gaberdiel,et al. Duality in N = 2 minimal model holography , 2013 .
[18] R. Gopakumar,et al. Large N = 4 holography , 2013 .
[19] Gustavo Lucena Gómez,et al. Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity , 2012, 1203.5152.
[20] M. Gaberdiel,et al. Supersymmetric holography on AdS3 , 2012, 1203.1939.
[21] M. Gaberdiel,et al. Limits of minimal models and continuous orbifolds , 2011, 1112.1708.
[22] T. Creutzig,et al. Higher spin AdS3 supergravity and its dual CFT , 2011, 1111.2139.
[23] Thomas Hartman,et al. Symmetries of holographic minimal models , 2011, 1101.2910.
[24] R. Gopakumar,et al. An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.
[25] S. Pfenninger,et al. Asymptotic W-symmetries in three-dimensional higher-spin gauge theories , 2011 .
[26] S. Pfenninger,et al. Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.
[27] M. Flohr,et al. Conformal Field Theory , 2006 .
[28] S. Wadia,et al. Microscopic formulation of black holes in string theory , 2002, hep-th/0203048.
[29] M. Vasiliev. Higher Spin Gauge Theories: Star-Product and AdS Space , 1999, hep-th/9910096.
[30] J. Boer,et al. AdS/CFT dualities involving large 2d N=4 superconformal symmetry , 1999, hep-th/9904073.
[31] M. Vasiliev,et al. 3D Higher-Spin Gauge Theories with Matter , 1998, hep-th/9812242.
[32] M. Vasiliev,et al. Higher-spin gauge interactions for massive matter fields in 3D AdS space-time , 1998, hep-th/9806236.
[33] K. Schoutens,et al. W symmetry in conformal field theory , 1992, hep-th/9210010.
[34] M. Vasiliev,et al. The structure of the super-W∞(λ) algebra , 1991 .
[35] Kris Thielemans,et al. A Mathematica package for computing operator product expansions , 1991 .
[36] R. Blumenhagen,et al. W-algebras with two and three generators , 1991 .
[37] M. Vasiliev,et al. The super-W∞(λ) algebra , 1990 .
[38] A. Proeyen,et al. Superconformal algebras in two dimensions with N=4 , 1988 .
[39] M. Vasiliev. Extended Higher‐Spin Superalgebras and Their Realizations in Terms of Quantum Operators , 1988 .