Stability limits of premixed microflames at elevated temperatures

In order to provide the database for designing microcombustors, the combustion characteristics of premixed methane and propane air microflames at normal and elevated temperatures and atmospheric pressure generated on a microtube were studied experimentally and computationally. The stability limits of premixed microflames and the propensity of the microflames near the stability limits were experimentally determined, while the structure of the microflame at the fuel-leanest limit was obtained using a two-dimensional CFD simulation with a reduced kinetic mechanism. For all the microflames, the stability limits were observed only in the fuel-rich region. Results also show substantial extension of stability limits with elevated temperature that is realistic condition for micro fuel processing and significant fuel dilution immediately near the tube exit due to a low Peclet number times Lewis number effect.