Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions.

[1]  Jian-Kang Zhu,et al.  Regulation of Ion Homeostasis under Salt Stress , 2015 .

[2]  M. Tester,et al.  Na+ tolerance and Na+ transport in higher plants. , 2003, Annals of botany.

[3]  R. Sinha,et al.  Role of Lipids and Fatty Acids in Stress Tolerance in Cyanobacteria , 2002 .

[4]  Karl H. Mühling,et al.  Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance , 2002 .

[5]  S. Yokoi,et al.  Salt Stress Tolerance of Plants , 2002 .

[6]  K. Venema,et al.  Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. , 2001, Physiologia plantarum.

[7]  F. Navari-Izzo,et al.  Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. , 2001, Journal of experimental botany.

[8]  A. Okanenko,et al.  Sulpholipid reflects plant resistance to stress-factor action. , 2000, Biochemical Society transactions.

[9]  L. Ouelhazi,et al.  Analysis by two‐dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt‐tolerant and a salt‐sensitive cultivar of wheat , 2000, Electrophoresis.

[10]  M. Rodríguez-Rosales,et al.  Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli , 1999 .

[11]  L. Ouelhazi,et al.  Effects of cytokinins on the polypeptide composition of microsomal membranes from Catharanthus roseus cell suspension cultures , 1999 .

[12]  F. Limam,et al.  Phytohormone regulation of isoperoxidases in Catharanthus roseus suspension cultures. , 1998, Phytochemistry.

[13]  J. L. Gallagher,et al.  Stress tolerance in the marsh plant Spartina patens: Impact of NaCl on growth and root plasma membrane lipid composition , 1998 .

[14]  M. Zarrouk,et al.  Cadmium- and copper-induced changes in tomato membrane lipids. , 1997, Phytochemistry.

[15]  M. Durand,et al.  Lipid changes in soybean root membranes in response to salt treatment , 1996 .

[16]  P. Hasegawa,et al.  Ion Homeostasis in NaCl Stress Environments , 1995, Plant physiology.

[17]  P. Kuiper,et al.  Plasma membrane lipid alterations induced by NaCl in winter wheat roots , 1994 .

[18]  F. Vázquez-Flota,et al.  A Catharanthus roseus Salt Tolerant Line I. Selection and Characterization , 1994 .

[19]  M. Magdy,et al.  Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordeum vulgare , 1993 .

[20]  J. Mérillon,et al.  Modulation by cytokinin of membrane lipids in Catharanthus roseus cells , 1993 .

[21]  C. Cantrel,et al.  Lipid and protein changes in jojoba callus under salt stress , 1992 .

[22]  J. Allais,et al.  Comparison of the sterol content of tonoplast and microsomal fractions isolated from Catharanthus roseus suspension-cultured cells , 1992 .

[23]  M. A. Hartman,et al.  Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Morpurgo Correlation between potato clones grown in vivo and in vitro under sodium chloride stress conditions , 1991 .

[25]  D. Cooke,et al.  Lipid modulation of plasma membrane‐bound ATPases , 1990 .

[26]  F. Dupont,et al.  Lipid Composition of Plasma Membranes and Endomembranes Prepared from Roots of Barley (Hordeum vulgare L.) : Effects of Salt. , 1989, Plant physiology.

[27]  G. A. Thompson,et al.  Lipid Characterization of an Enriched Plasma Membrane Fraction of Dunaliella salina Grown in Media of Varying Salinity. , 1989, Plant physiology.

[28]  J. Mérillon,et al.  Metabolic Changes and Alkaloid Production in Habituated and Non-habituated Cells of Catharanthus roseus Grown in Hormone-free Medium. Comparing Hormone-deprived Non-habituated Cells with Habituated Cells , 1989 .

[29]  C. Haest,et al.  Lipid modulation of transport proteins in vertebrate cell membranes. , 1987, Annual review of physiology.

[30]  P. Kuiper Environmental changes and lipid metabolism of higher plants , 1985 .

[31]  R. Walker,et al.  Phospholipids, free sterols and adenosine triphosphatase of plasma membrane‐enriched preparations from roots of citrus genotypes differing in chloride exclusion ability , 1984 .

[32]  Meir Shinitzky,et al.  Physiology of membrane fluidity , 1984 .

[33]  P. Kuiper,et al.  The effect of salinity on lipid composition and on activity of Ca2+‐ and Mg2+‐stimulated ATPases in salt‐sensitive and salt‐tolerant Plantago species , 1980 .

[34]  K. Santarius,et al.  Changes in Chloroplast Membrane Lipids during Adaptation of Barley to Extreme Salinity. , 1978, Plant physiology.

[35]  S J Singer,et al.  Membrane fluidity and cellular functions. , 1975, Advances in experimental medicine and biology.

[36]  A. Trémolières,et al.  Changes in Lipid Composition during Greening of Etiolated Pea Seedlings. , 1971, Plant physiology.

[37]  L. D. Metcalfe,et al.  Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. , 1966 .

[38]  A. Raftery,et al.  A Stable Reagent for the Liebermann-Burchard Reaction. Application to Rapid Serum Cholesterol Determination , 1961 .

[39]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.