Cycle type and descent set in wreath products
暂无分享,去创建一个
[1] Jim Pitman,et al. Riffle shuffles, cycles, and descents , 1995, Comb..
[2] C. Reutenauer. Free Lie Algebras , 1993 .
[3] Henri Poincaré,et al. Sur les propriétés arithmétiques des courbes algébriques , 1901 .
[4] Ladnor Geissinger,et al. Representations of the hyperoctahedral groups , 1978 .
[5] Louis Solomon,et al. A decomposition of the group algebra of a finite Coxeter group , 1968 .
[6] Ira M. Gessel,et al. Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.
[7] I. G. MacDonald,et al. Polynomial functors and wreath products , 1980 .
[8] A. Kerber. Representations of permutation groups , 1975 .
[9] J. Stembridge. The projective representations of the hyperoctahedral group , 1992 .
[10] W. Specht. Eine Verallgemeinerung der symmetrischen Gruppe , 1932 .
[11] Désiré André,et al. Sur les permutations alternées , 1881 .
[12] Einar Steingrímsson,et al. Permutation Statistics of Indexed Permutations , 1994, Eur. J. Comb..
[13] Dominique Foata,et al. Major Index and Inversion Number of Permutations , 1978 .
[14] Richard Ehrenborg,et al. Sheffer posets and r-signed permutations , 1995 .
[15] H. O. Foulkes,et al. Enumeration of permutations with prescribed up-down and inversion sequences , 1976, Discret. Math..
[16] Ladnor Geissinger. Hopf algebras of symmetric functions and class functions , 1977 .
[17] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .