Comments on holographic complexity

A bstractWe study two recent conjectures for holographic complexity: the complexity=action conjecture and the complexity=volume conjecture. In particular, we examine the structure of the UV divergences appearing in these quantities, and show that the coefficients can be written as local integrals of geometric quantities in the boundary. We also consider extending these conjectures to evaluate the complexity of the mixed state produced by reducing the pure global state to a specific subregion of the boundary time slice. The UV divergences in this subregion complexity have a similar geometric structure, but there are also new divergences associated with the geometry of the surface enclosing the boundary region of interest. We discuss possible implications arising from the geometric nature of these UV divergences.

[1]  M. Raamsdonk,et al.  Gravitation from entanglement in holographic CFTs , 2013, 1312.7856.

[2]  Robert C. Myers,et al.  Entanglement entropy for singular surfaces , 2012, 1206.5225.

[3]  M. Paulos,et al.  Holographic GB gravity in arbitrary dimensions , 2009, 0911.4257.

[4]  P. Nguyen,et al.  Noether charge, black hole volume, and complexity , 2016, 1610.02038.

[5]  D. Marolf,et al.  State-dependent divergences in the entanglement entropy , 2016, 1607.01246.

[6]  R. Myers,et al.  Holographic de Sitter Geometry from Entanglement in Conformal Field Theory. , 2015, Physical review letters.

[7]  M. Laine,et al.  Heavy Quark Thermalization in Classical Lattice Gauge Theory , 2009, 0902.2856.

[8]  Matthew Headrick,et al.  Causality & holographic entanglement entropy , 2014, 1408.6300.

[9]  T. Padmanabhan,et al.  Null Surfaces: Counter-term for the Action Principle and the Characterization of the Gravitational Degrees of Freedom , 2015 .

[10]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[11]  Dean Carmi,et al.  On volumes of subregions in holography and complexity , 2016, 1609.02514.

[12]  S. Ross,et al.  Divergences in holographic complexity , 2016, 1612.05439.

[13]  R. Myers,et al.  Corner contributions to holographic entanglement entropy , 2015, 1505.07842.

[14]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[15]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[16]  M. Paulos,et al.  Holographic studies of quasi-topological gravity , 2010, 1004.2055.

[17]  Seung Woo Shin,et al.  Quantum Hamiltonian Complexity , 2014, Found. Trends Theor. Comput. Sci..

[18]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[19]  M. Raamsdonk,et al.  Canonical energy is quantum Fisher information , 2015, 1508.00897.

[20]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[21]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[22]  Sam McCandlish,et al.  A stereoscopic look into the bulk , 2016, 1604.03110.

[23]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[24]  J. Maldacena,et al.  Gluon scattering amplitudes at strong coupling , 2007, 0705.0303.

[25]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[26]  L. Susskind,et al.  Switchbacks and the Bridge to Nowhere , 2014, 1408.2823.

[27]  Rafael D. Sorkin,et al.  Gravitational action with null boundaries , 2016, 1609.00207.

[28]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[29]  Robert C. Myers,et al.  On the architecture of spacetime geometry , 2012, 1212.5183.

[30]  A note on twist two operators in = 4 SYM and Wilson loops in Minkowski signature , 2002, hep-th/0210115.

[31]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[32]  M. Alishahiha Holographic Complexity , 2015, 1509.06614.

[33]  P. M. Bjørnstad,et al.  Production of J/ψ and $ \varUpsilon $ mesons in pp collisions at $ \sqrt{s}=8 $ TeV , 2013, 1304.6977.

[34]  R. Myers,et al.  On holographic entanglement entropy and higher curvature gravity , 2011, 1101.5813.

[35]  L. Susskind Addendum to computational complexity and black hole horizons , 2014, 1403.5695.

[36]  F. Nogueira,et al.  The gravity dual of a density matrix , 2012, 1204.1330.

[37]  H. Casini,et al.  Local temperatures and local terms in modular Hamiltonians , 2016, 1611.08517.

[38]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[39]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[40]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[41]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[42]  Eric Gourgoulhon 3+1 Formalism and Bases of Numerical Relativity , 2007 .

[43]  G. Giorgadze Geometry of quantum computation , 2013 .

[44]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[45]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[46]  Surface terms as counterterms in the AdS-CFT correspondence , 1999, hep-th/9903238.

[47]  Is the gravitational action additive? , 1994, Physical review. D, Particles and fields.

[48]  Kostas Skenderis Lecture notes on holographic renormalization , 2002 .

[49]  M. Freedman,et al.  Bit Threads and Holographic Entanglement , 2016, Communications in Mathematical Physics.

[50]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[51]  Sotaro Sugishita,et al.  On the time dependence of holographic complexity , 2017, 1709.10184.

[52]  R. Bonciani,et al.  Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel , 2008, 0806.2301.

[53]  J. Boer,et al.  Entanglement, holography and causal diamonds , 2016, Journal of High Energy Physics.

[54]  W. Stinespring Positive functions on *-algebras , 1955 .

[55]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[56]  L. A. Granado Cardoso,et al.  Measurement of the forward Z boson production cross-section in pp collisions at s=7$$ \sqrt{s}=7 $$ TeV , 2015, 1505.07024.

[57]  T. Osborne Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.

[58]  S. Solodukhin Entanglement entropy, conformal invariance and extrinsic geometry , 2008, 0802.3117.

[59]  Hayward,et al.  Gravitational action for spacetimes with nonsmooth boundaries. , 1993, Physical review. D, Particles and fields.

[60]  C. Rovelli,et al.  How big is a black hole , 2014, 1411.2854.

[61]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[62]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[63]  Holographic Reconstruction of Spacetime¶and Renormalization in the AdS/CFT Correspondence , 2000, hep-th/0002230.

[64]  Conformal anomaly of submanifold observables in AdS/CFT correspondence☆ , 1999, hep-th/9901021.

[65]  C. Fefferman,et al.  The Ambient Metric , 2007, 0710.0919.

[66]  S. Theisen,et al.  Entanglement entropy, trace anomalies and holography ✩ , 2008, 0802.1017.

[67]  R. Myers,et al.  Some calculable contributions to holographic entanglement entropy , 2011, 1105.6055.

[68]  Marios Christodoulou,et al.  Volume inside old black holes , 2016, 1604.07222.

[69]  R. Myers,et al.  Complexity of formation in holography , 2016, 1610.08063.

[70]  Aitor Lewkowycz,et al.  Deriving covariant holographic entanglement , 2016, 1607.07506.