Achieving downscaling of Meteosat thermal infrared imagery using artificial neural networks

This study presents the successful application of artificial neural networks (ANNs) for downscaling Meteosat Second Generation thermal infrared satellite imagery. The scope is to examine, propose, and develop an integrated methodology to improve the spatial resolution of Meteosat satellite images. The proposed approach may contribute to the development of a general methodology for monitoring and downscaling Earth’s surface characteristics and cloud systems, where there is a clear need for contiguous, accurate, and high-spatial resolution data sets (e.g. improvement of climate model input data sets, early warning systems about extreme weather phenomena, monitoring of parameters such as solar radiation fluxes, land-surface temperature, etc.). Moderate Resolution Imaging Spectroradiometer (MODIS) images are used to validate the downscaled Meteosat images. In terms of the ANNs, a multilayer perceptron (MLP) is used and the results are shown to compare favourably against a linear regression approach.

[1]  Guomo Zhou,et al.  Geostatistical interpolation of missing data and downscaling of spatial resolution for remotely sensed atmospheric methane column concentrations , 2012 .

[2]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[3]  Luiz A. T. Machado,et al.  Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation , 2008 .

[4]  Metin Akay,et al.  Neural Networks: A Guided Tour , 2000 .

[5]  Liu Mingzhe,et al.  Least Square Support Vector Machine Ensemble for Daily Rainfall Forecasting Based on Linear and Nonlinear Regression , 2010 .

[6]  Ewout W Steyerberg,et al.  Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods? , 2012, Biometrical journal. Biometrische Zeitschrift.

[7]  Freek D. van der Meer,et al.  Remote-sensing image analysis and geostatistics , 2012 .

[8]  Taha B. M. J. Ouarda,et al.  Automated regression-based statistical downscaling tool , 2008, Environ. Model. Softw..

[9]  P. Whetton,et al.  Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods , 2004 .

[10]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[11]  Vijay P. Singh,et al.  Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China , 2009 .

[12]  Marion Schroedter-Homscheidt,et al.  Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments , 2009 .

[13]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[14]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[15]  Barbara Hammer,et al.  Neural Smithing – Supervised Learning in Feedforward Artificial Neural Networks , 2001, Pattern Analysis & Applications.

[16]  Ruiliang Pu,et al.  Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval , 2008, Sensors.

[17]  Chrysostomos D. Stylios,et al.  Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines , 2006, IEEE Transactions on Biomedical Engineering.

[18]  Paulin Coulibaly,et al.  Temporal neural networks for downscaling climate variability and extremes , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[19]  S. de Bruin,et al.  Integrating spatial statistics and remote sensing , 1998 .

[20]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[21]  Stavros Kolios,et al.  An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part I: System description , 2013 .

[22]  Rob Roebeling,et al.  Downscaling of METEOSAT SEVIRI 0.6 and 0.8 μm channel radiances utilizing the high-resolution visible channel , 2010 .

[23]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[24]  SunD.,et al.  Retrieval of surface temperature from the MSG-SEVIRI observations , 2007 .

[25]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[26]  Rasmus Fensholt,et al.  Estimation of diurnal air temperature using MSG SEVIRI data in West Africa , 2007 .

[27]  George J. Vachtsevanos,et al.  Evaluation of Feature Selection Techniques for Analysis of Functional MRI and EEG , 2007, DMIN.

[28]  C. Morel,et al.  A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology , 2002 .

[29]  K. Oštir,et al.  Downscaling land surface temperature for urban heat island diurnal cycle analysis , 2012 .

[30]  R. Wilby Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices , 1998 .

[31]  Stavros Kolios,et al.  An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part II: Verification statistics , 2013 .

[32]  Rachel T. Pinker,et al.  Retrieval of surface temperature from the MSG‐SEVIRI observations: Part I. Methodology , 2007 .

[33]  C. Cartalis,et al.  Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation , 2009 .

[34]  Dimitrios Melas,et al.  Statistical downscaling of daily precipitation over Greece , 2008 .

[35]  C. Georgiev,et al.  Usefulness of satellite water vapour imagery in forecasting strong convection: A flash-flood case study , 2009 .

[36]  John A. Cornell,et al.  Statistical Methods (7th ed.) , 2012 .

[37]  Toshiro Inoue,et al.  Comparison of a split-window and a multi-spectral cloud classification for MODIS observations , 2003 .

[38]  Mohak Shah,et al.  Evaluating Learning Algorithms: A Classification Perspective , 2011 .

[39]  W. J. Langford Statistical Methods , 1959, Nature.

[40]  Robert M. Rabin,et al.  COLD-RING SHAPED STORMS IN CENTRAL EUROPE , 2008 .

[41]  M.N.S. Swamy,et al.  Neural networks in a softcomputing framework , 2006 .

[42]  M. Schaepman,et al.  Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics , 2009 .

[43]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[44]  Robert H. Kushler,et al.  Exploratory Data Analysis With MATLAB® , 2006, Technometrics.