A partial solution to the reachability-problem for vector-addition systems
暂无分享,去创建一个
[1] B. O. Nash. Reachability Problems in Vector Addition Systems , 1973 .
[2] Robert M. Keller,et al. Parallel program schemata and maximal parallelism , 1972 .
[3] Daniel J. Rosenkrantz,et al. Programmed Grammars and Classes of Formal Languages , 1969, JACM.
[4] Peter Aitchison,et al. A decision procedure using the geometry of convex sets , 1974 .
[5] Arto Salomaa,et al. Matrix Grammars with a Leftmost Restriction , 1972, Inf. Control..
[6] Richard M. Karp,et al. Parallel Program Schemata , 1969, J. Comput. Syst. Sci..
[7] Robert M. Keller,et al. Parallel Program Schemata and Maximal Parallelism I. Fundamental Results , 1973, JACM.
[8] Hofreiter. Diophantische Gleichungen , 1939 .
[9] G. Frobenius,et al. Theorie der linearen Formen mit ganzen Coefficienten. , 1879 .
[10] Rohit Parikh,et al. On Context-Free Languages , 1966, JACM.
[11] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[12] Jeffrey D. Ullman,et al. Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.
[13] Bobby Otis Nash. Context-free parallel leveled languages , 1970 .
[14] Gabor T. Herman,et al. A decision procedure using discrete geometry , 1973, Discret. Math..