Joint Sparse Principal Component Analysis Based Roust Sparse Fault Detection

In this paper, a novel variant of PCA, joint sparse principal component analysis(JSPCA), is adopted into robust sparse fault detection. By imposing l2,1 norm jointly on the loss function and the regularization term of traditional sparse PCA, the JSPCA based fault detection method achieves sparse feature selection and robust fault detection simultaneously without high computation cost. The effectiveness of the proposed method is evaluated on the Tennessee Eastman process.

[1]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[3]  Zhenyu He,et al.  Joint sparse principal component analysis , 2017, Pattern Recognit..

[4]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[5]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[6]  Chudong Tong,et al.  Sparse Robust Principal Component Analysis with Applications to Fault Detection and Diagnosis , 2019, Industrial & Engineering Chemistry Research.

[7]  Feiping Nie,et al.  Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.

[8]  Feiping Nie,et al.  Optimal Mean Robust Principal Component Analysis , 2014, ICML.

[9]  Peng Peng,et al.  A Robust and Sparse Process Fault Detection Method Based on RSPCA , 2019, IEEE Access.

[10]  Deyu Meng,et al.  Improve robustness of sparse PCA by L1-norm maximization , 2012, Pattern Recognit..

[11]  Vikram Garaniya,et al.  A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes , 2016 .

[12]  Gert R. G. Lanckriet,et al.  Sparse eigen methods by D.C. programming , 2007, ICML '07.

[13]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[15]  Shai Avidan,et al.  Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.

[16]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[17]  Chudong Tong,et al.  Improvements to the T2 statistic for multivariate fault detection , 2019 .

[18]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.