Elephant shark genome provides unique insights into gnathostome evolution

[1]  P. Ahlberg,et al.  A Silurian placoderm with osteichthyan-like marginal jaw bones , 2013, Nature.

[2]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[3]  Alexander S. Garruss,et al.  Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution , 2013, Nature Genetics.

[4]  T. Boehm Evolution of Vertebrate Immunity , 2012, Current Biology.

[5]  M. Flajnik,et al.  Erratum to: Evolution of the B7 family: co-evolution of B7H6 and Nkp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC , 2012, Immunogenetics.

[6]  A. Singer,et al.  αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. , 2012, Immunity.

[7]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[8]  Inge Jonassen,et al.  The genome sequence of Atlantic cod reveals a unique immune system , 2011, Nature.

[9]  B. Venkatesh,et al.  Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. , 2010, Molecular biology and evolution.

[10]  H. Ellegren Evolutionary stasis: the stable chromosomes of birds. , 2010, Trends in ecology & evolution.

[11]  Gavin Young Placoderms (Armored Fish): Dominant Vertebrates of the Devonian Period , 2010 .

[12]  K. Kawasaki The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues , 2009, Development Genes and Evolution.

[13]  B. Hallström,et al.  Gnathostome phylogenomics utilizing lungfish EST sequences. , 2009, Molecular biology and evolution.

[14]  N. Plaster,et al.  Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development , 2008, Development.

[15]  K. Weiss,et al.  Gene Duplication and the Evolution of Vertebrate Skeletal Mineralization , 2007, Cells Tissues Organs.

[16]  Justin Johnson,et al.  Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome , 2007, PLoS biology.

[17]  P. Janvier Palaeontology: Modern look for ancient lamprey , 2006, Nature.

[18]  P. Donoghue,et al.  Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[19]  M. Flajnik,et al.  Antibody repertoire development in cartilaginous fish. , 2006, Developmental and comparative immunology.

[20]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[21]  M. Flajnik,et al.  Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum , 2005, European journal of immunology.

[22]  Byrappa Venkatesh,et al.  A compact cartilaginous fish model genome , 2005, Current Biology.

[23]  L. Du Pasquier,et al.  Immunoglobulin superfamily receptors in protochordates: before RAG time , 2004, Immunological reviews.

[24]  Sandhya Dwarkadas,et al.  Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..

[25]  Mark S. Anderson,et al.  Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein , 2002, Science.

[26]  D. Burt,et al.  Origin and evolution of avian microchromosomes , 2002, Cytogenetic and Genome Research.

[27]  J. Roach,et al.  Comparative genomics of the human and mouse T cell receptor loci. , 2001, Immunity.

[28]  P. Holland,et al.  Vertebrate innovations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. P. Martin,et al.  Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). , 1999, Molecular biology and evolution.

[30]  Ú. Árnason,et al.  Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Andrew P. Martin,et al.  Rates of mitochondrial DNA evolution in sharks are slow compared with mammals , 1992, Nature.

[33]  D. Tautz,et al.  Conservation of polymorphic simple sequence loci in cetacean species , 1991, Nature.

[34]  J. Stevens,et al.  Sharks and Rays of Australia , 1991 .

[35]  C. Gans,et al.  Neural Crest and the Origin of Vertebrates: A New Head , 1983, Science.

[36]  J. S. Nelson,et al.  Fishes of the world. , 1978 .