Abundances in the Herbig Ae star HD 101412 - Abundance anomalies; λ Boo–Vega characteristics?

Context. Recent attention has been directed to abundance variations among very young stars. Aims. We perform a detailed abundance study of the Herbig Ae star HD 101412, taking advantage of its unusually sharp spectral lines. Methods. High-resolution spectra are measured for accurate wavelengths and equivalent widths. Balmer-line fits and ionization equlibria give a relation between Teff, and log(g). Abundance anomalies and uncertain reddening preclude the use of spectral type or photometry to fix Teff. Excitation temperatures are used to break the degeneracy between Teff and log(g). Results. Strong lines are subject to an anomalous saturation that cannot be removed by assuming a low microturbulence. By restricting the analysis to weak (≤20 mA) lines, we find consistent results for neutral and ionized species, based on a model with Teff = 8300 K, and log(g) = 3.8. The photosphere is depleted in the most refractory elements, while volatiles are normal or, in the case of nitrogen, overabundant with respect to the sun. The anomalies are unlike those of Ap or Am stars. Conclusions. We suggest the anomalous saturation of strong lines arises from heating of the upper atmospheric layers by infalling material from a disk. The overall abundance pattern may be related to those found for the λ Boo stars, though the depletions of the refractory elements are milder, more like those of Vega. However, the intermediate volatile zinc is depleted, precluding a straightforward interpretation of the abundance pattern in terms of gas-grain separation.

[1]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[2]  H. Lundberg,et al.  Experimental Ca I oscillator strengths for the 4p-5s triplet , 2009 .

[3]  M. E. van den Ancker,et al.  The structure of the protoplanetary disk surrounding three young intermediate mass stars II. Spatially resolved dust and gas distribution , 2008, 0809.3947.

[4]  Y. Takeda Abundances of lithium, sodium and potassium in Vega★ , 2008, 0805.2436.

[5]  J. Lawler,et al.  Improved Laboratory Transition Probabilities for Neutral Chromium and Redetermination of the Chromium Abundance for the Sun and Three Stars , 2007, 0707.4603.

[6]  W. Corradi,et al.  Stellar parameters and evidence of circumstellar activity for a sample of Herbig Ae/Be stars , 2006 .

[7]  M. Asplund,et al.  New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium , 2006 .

[8]  G. Wade,et al.  Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars , 2005, astro-ph/0601624.

[9]  L. Hobbs Hyperfine structure and interstellar curves of growth , 2005 .

[10]  P. Berlind,et al.  Herbig Ae/Be Stars in nearby OB Associations , 2004, astro-ph/0410494.

[11]  C. Waelkens,et al.  Chemical analysis of 24 dusty (pre-)main-sequence stars , 2004, astro-ph/0408221.

[12]  F. Castelli,et al.  The Ca II infrared triplet as indicator of anomalous Ca isotopic mixture in HgMn stars , 2004 .

[13]  W. Corradi,et al.  Investigation of 131 Herbig Ae/Be Candidate Stars , 2003 .

[14]  M. Schoeller,et al.  Measurements of magnetic fields over the pulsation cycle in six roAp stars with FORS 1 at the VLT , 2003, astro-ph/0309561.

[15]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[16]  Austria,et al.  The status of Galactic field λ Bootis stars in the post‐Hipparcos era , 2002, astro-ph/0207488.

[17]  I. Kamp,et al.  Light element non-LTE abundances of lambda Bootis stars. II. Nitrogen and sulphur , 2001 .

[18]  J. Pickering,et al.  Oscillator Strengths of Transitions in Ti II in the Visible and Ultraviolet regions , 2001 .

[19]  J. Bouwman,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2000, astro-ph/0012295.

[20]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[21]  L. Hartmann,et al.  Accretion processes in star formation , 1999 .

[22]  C. Corbally,et al.  The Incidence of λ Boötis Stars via an Extension of the MK Spectral Classification System to Very Young A-Type Stars , 1998 .

[23]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[24]  E. Paunzen The $\lambda$ Bootis stars , 1998, Proceedings of the International Astronomical Union.

[25]  Kim A. Venn,et al.  The chemical composition of three Lambda Bootis stars , 1990 .

[26]  C. Cowley,et al.  A New Solar Curve of Growth. , 1964 .

[27]  I. Levitt Astrophysics. The atmospheres of the sun and stars: by Lawrence H. Aller. 412 pages, diagrams, 16 × 24 cm. New York, The Ronald Press Co., 1953. Price, $12.00 , 1954 .

[28]  L. Aller Astrophysics. The Atmospheres of the Sun and Stars , 1954 .

[29]  E. Held Intensität und natürliche Breite von Spektrallinien , 1931 .

[30]  H. Nilsson,et al.  The FERRUM project: improved experimental oscillator strengths in Cr II , 2006 .

[31]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[32]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[33]  John Scott Drilling,et al.  in Allen''''s Astrophysical Quantities , 2000 .

[34]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[35]  Nancy Houk,et al.  University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. Declinations -90_ to -53_f0. , 1975 .

[36]  Nancy Houk,et al.  Michigan catalogue of two-dimensional spectral types for the HD stars , 1975 .