LHC constraints and potential on resonant monotop production

[1]  C. Collaboration,et al.  Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s=13  TeV , 2019, Physical Review D.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  E Banas,et al.  Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at sqrt[s]=13  TeV. , 2018, Physical review letters.

[4]  Benjamin Fuks,et al.  Confronting new physics theories to LHC data with MADANALYSIS 5 , 2018, International Journal of Modern Physics A.

[5]  V. M. Ghete,et al.  Search for narrow and broad dijet resonances in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV and constraints on dark matter mediators and other new particles , 2018, Journal of High Energy Physics.

[6]  C. Collaboration,et al.  Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter mediators and other new particles , 2018, 1806.00843.

[7]  R. Frederix,et al.  The automation of next-to-leading order electroweak calculations , 2018, 1804.10017.

[8]  V. M. Ghete,et al.  Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at s=13$$ \sqrt{s}=13 $$ TeV , 2018, Journal of High Energy Physics.

[9]  V. M. Ghete,et al.  Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2018 .

[10]  K. Sakurai,et al.  Monotop signature from a fermionic top partner , 2017, 1710.09377.

[11]  Soomin Jeong,et al.  Madanalysis5 implementation of CMS-SUS-17-001 , 2018 .

[12]  M. P. Casado,et al.  Search for heavy ZZ resonances in the $$\ell ^+\ell ^-\ell ^+\ell ^-$$ℓ+ℓ-ℓ+ℓ- and $$\ell ^+\ell ^-\nu \bar{\nu }$$ℓ+ℓ-νν¯ final states using proton–proton collisions at $$\sqrt{s}= 13$$s=13 $$\text {TeV}$$TeV with the ATLAS detector , 2017 .

[13]  S. M. Etesami,et al.  Search for top squarks and dark matter particles in opposite-charge dilepton final states at s = 13 TeV , 2017 .

[14]  Bruce Yabsley,et al.  Search for new phenomena in dijet events using 37 fb-1 of pp collision data collected at s =13 TeV with the ATLAS detector , 2017 .

[15]  S. M. Etesami,et al.  Search for top squark pair production in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV using single lepton events , 2017 .

[16]  D. Barducci,et al.  Cornering pseudoscalar-mediated dark matter with the LHC and cosmology , 2017, 1705.02327.

[17]  Guang Hua Duan,et al.  Leptonic mono-top from single stop production at the LHC , 2016, Journal of High Energy Physics.

[18]  B. Fuks MadAnalysis5 implementation of the mono-Z analysis of CMS with 2.3 fb-1 of data (CMS-EXO-16-010) , 2017 .

[19]  K. Sakurai,et al.  Tagging a monotop signature in natural SUSY , 2016, 1610.06179.

[20]  Scoap Search for squarks and gluinos in final states with jets and missing transverse momentum at s =13 TeV with the ATLAS detector , 2016 .

[21]  J. Caudron,et al.  Search for squarks and gluinos in final states with jets and missing transverse momentum at $$\sqrt{s}$$s =13 $${\mathrm{TeV}}$$TeVwith the ATLAS detector , 2016, The European physical journal. C, Particles and fields.

[22]  Jin Min Yang,et al.  Single top squark production as a probe of natural supersymmetry at the LHC , 2015, 1505.06006.

[23]  Li-Jun Hu Search for low-mass pair-produced dijet resonances using jet substructure techniques in proton-proton collisions at a center-of-mass energy of s=13 TeV , 2016 .

[24]  D. Sengupta Madanalysis5 implementation of the ATLAS monojet and missing transverse momentum search documented in arXiv: 1604.07773 , 2016 .

[25]  Kentarou Mawatari,et al.  Signatures of top flavour-changing dark matter , 2015, 1511.07463.

[26]  P. D. Luckey,et al.  Search for pair-produced resonances decaying to jet pairs in proton–proton collisions at √s = 8 TeV , 2015 .

[27]  I-A Melzer-Pellmann,et al.  Search for monotop signatures in proton-proton collisions at √s=8  TeV. , 2015, Physical review letters.

[28]  P. Catastini,et al.  Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s=8 TeV with the ATLAS detector , 2015, 1502.01518.

[29]  F. Taylor Search for invisible particles produced in association with single-top-quarks in proton–proton collisions at √s = 8 TeV with the ATLAS detector , 2015 .

[30]  J. T. Childers,et al.  Search for invisible particles produced in association with single-top-quarks in proton–proton collisions at $$\sqrt{s}=\mathrm {8~TeV}$$s=8TeV with the ATLAS detector , 2015, The European Physical Journal C.

[31]  V. Hirschi,et al.  Automated next-to-leading order predictions for new physics at the LHC: The case of colored scalar pair production , 2014, 1412.5589.

[32]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[33]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[34]  Céline Degrande,et al.  Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: A proof-of-principle , 2014, Comput. Phys. Commun..

[35]  P. Richardson,et al.  Studying the sensitivity of monotop probes to compressed supersymmetric scenarios at the LHC , 2014, 1408.3634.

[36]  A. Deandrea,et al.  Revisiting monotop production at the LHC , 2014, 1407.7529.

[37]  Sanjay Padhi,et al.  Squark and gluino production cross sections in $$pp$$pp collisions at $$\sqrt{s} = 13, 14, 33$$s=13,14,33 and $$100$$100 TeV , 2014, 1407.5066.

[38]  E. Conte,et al.  Toward a public analysis database for LHC new physics searches using MADANALYSIS 5 , 2014, 1407.3278.

[39]  Chris Wymant,et al.  Designing and recasting LHC analyses with MadAnalysis 5 , 2014, 1405.3982.

[40]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[41]  S. M. Etesami,et al.  Measurement of the ratio B(t→Wb)/B(t→Wq) in pp collisions at s=8 TeV , 2014 .

[42]  A. D. L. Puente,et al.  Probing radiative neutrino mass generation through monotop production , 2014, 1404.1415.

[43]  J. Agram,et al.  Monotop phenomenology at the Large Hadron Collider , 2013, 1311.6478.

[44]  J. Kamenik,et al.  Leptonic monotops at the LHC , 2013, 1310.7600.

[45]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[46]  J. Favereau,et al.  DELPHES 3: A modular framework for fast-simulation of generic collider experiments , 2014 .

[47]  Christoph Borschensky Squark and gluino production cross sections in pp collisions , 2014 .

[48]  D. Whiteson,et al.  Direct measurement of the total decay width of the top quark. , 2013, Physical review letters.

[49]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[50]  Benjamin Fuks,et al.  MadAnalysis 5, a user-friendly framework for collider phenomenology , 2012, Comput. Phys. Commun..

[51]  M. Dorigo,et al.  Search for a dark matter candidate produced in association with a single top quark in pp collisions at √[s]=1.96  TeV. , 2012, Physical review letters.

[52]  Chong-Sheng Li,et al.  Search for the signal of monotop production at the early LHC , 2011, 1109.5963.

[53]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[54]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[55]  J. Zupan,et al.  Discovering Dark Matter Through Flavor Violation at the LHC , 2011, 1107.0623.

[56]  J. Andrea,et al.  Monotops at the LHC , 2011, 1106.6199.

[57]  Rikkert Frederix,et al.  Automation of one-loop QCD computations , 2011, 1103.0621.

[58]  et al,et al.  Search for new particles decaying into dijets in proton-antiproton collisions at root s=1.96 TeV , 2008, 0812.4036.

[59]  Hsin-Chia Cheng,et al.  Minimal kinematic constraints and m T2 , 2008, 0810.5178.

[60]  R. Pittau,et al.  On the rational terms of the one-loop amplitudes , 2008, 0802.1876.

[61]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[62]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[63]  Gang Yang,et al.  The rational parts of one-loop QCD amplitudes I: The general formalism , 2006, hep-ph/0607015.

[64]  Gang Yang,et al.  The Rational Part of QCD Amplitude II: the Five-Gluon , 2006 .

[65]  A. Denner,et al.  The complex-mass scheme for perturbative calculations with unstable particles , 2006, hep-ph/0605312.

[66]  A. Denner,et al.  Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.

[67]  R. Pittau Formulae for a numerical computation of one-loop tensor integrals , 2004, hep-ph/0406105.

[68]  R. Pittau,et al.  Recursive numerical calculus of one-loop tensor integrals , 2004, hep-ph/0404120.

[69]  S. Frixione,et al.  Matching NLO QCD computations and parton shower simulations , 2002, hep-ph/0204244.

[70]  F. Ferrari Large N and double scaling limits in two dimensions , 2002, hep-th/0202002.

[71]  T. Hahn Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2000, hep-ph/0012260.

[72]  C. Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999, hep-ph/9906349.

[73]  C. Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999 .

[74]  D. Wackeroth,et al.  Predictions for all processes e + e - → fermions + γ , 1999, hep-ph/9904472.